Shortcuts

Utils

Parser utils

Asteroid has its own argument parser (built on argparse) that handles dict-like structure, created from a config YAML file.

asteroid.utils.parser_utils.prepare_parser_from_dict(dic, parser=None)[source]

Prepare an argparser from a dictionary.

Parameters:
  • dic (dict) – Two-level config dictionary with unique bottom-level keys.
  • parser (argparse.ArgumentParser, optional) – If a parser already exists, add the keys from the dictionary on the top of it.
Returns:

argparse.ArgumentParser – Parser instance with groups corresponding to the first level keys and arguments corresponding to the second level keys with default values given by the values.

asteroid.utils.parser_utils.str_int_float(value)[source]

Type to convert strings to int, float (in this order) if possible.

Parameters:value (str) – Value to convert.
Returns:int, float, str – Converted value.
asteroid.utils.parser_utils.str2bool(value)[source]

Type to convert strings to Boolean (returns input if not boolean)

asteroid.utils.parser_utils.str2bool_arg(value)[source]

Argparse type to convert strings to Boolean

asteroid.utils.parser_utils.isfloat(value)[source]

Computes whether value can be cast to a float.

Parameters:value (str) – Value to check.
Returns:bool – Whether value can be cast to a float.
asteroid.utils.parser_utils.isint(value)[source]

Computes whether value can be cast to an int

Parameters:value (str) – Value to check.
Returns:bool – Whether value can be cast to an int.
asteroid.utils.parser_utils.parse_args_as_dict(parser, return_plain_args=False, args=None)[source]

Get a dict of dicts out of process parser.parse_args()

Top-level keys corresponding to groups and bottom-level keys corresponding to arguments. Under ‘main_args’, the arguments which don’t belong to a argparse group (i.e main arguments defined before parsing from a dict) can be found.

Parameters:
  • parser (argparse.ArgumentParser) – ArgumentParser instance containing groups. Output of prepare_parser_from_dict.
  • return_plain_args (bool) – Whether to return the output or parser.parse_args().
  • args (list) – List of arguments as read from the command line. Used for unit testing.
Returns:

dict – Dictionary of dictionaries containing the arguments. Optionally the direct output parser.parse_args().

Torch utils

asteroid.utils.torch_utils.to_cuda(tensors)[source]

Transfer tensor, dict or list of tensors to GPU.

Parameters:tensors (torch.Tensor, list or dict) – May be a single, a list or a dictionary of tensors.
Returns:torch.Tensor – Same as input but transferred to cuda. Goes through lists and dicts and transfers the torch.Tensor to cuda. Leaves the rest untouched.
asteroid.utils.torch_utils.tensors_to_device(tensors, device)[source]

Transfer tensor, dict or list of tensors to device.

Parameters:
  • tensors (torch.Tensor) – May be a single, a list or a dictionary of tensors.
  • ( (device) – class: torch.device): the device where to place the tensors.
Returns:

Union [torch.Tensor, list, tuple, dict] – Same as input but transferred to device. Goes through lists and dicts and transfers the torch.Tensor to device. Leaves the rest untouched.

asteroid.utils.torch_utils.get_device(tensor_or_module, default=None)[source]

Get the device of a tensor or a module.

Parameters:
  • tensor_or_module (Union[torch.Tensor, torch.nn.Module]) – The object to get the device from. Can be a torch.Tensor, a torch.nn.Module, or anything else that has a device attribute or a parameters() -> Iterator[torch.Tensor] method.
  • default (Optional[Union[str, torch.device]]) – If the device can not be determined, return this device instead. If None (the default), raise a TypeError instead.
Returns:

torch.device – The device that tensor_or_module is on.

asteroid.utils.torch_utils.is_tracing()[source]

Returns True in tracing (if a function is called during the tracing of code with torch.jit.trace) and False otherwise.

asteroid.utils.torch_utils.script_if_tracing(fn)[source]

Compiles fn when it is first called during tracing. torch.jit.script has a non-negligible start up time when it is first called due to lazy-initializations of many compiler builtins. Therefore you should not use it in library code. However, you may want to have parts of your library work in tracing even if they use control flow. In these cases, you should use @torch.jit.script_if_tracing to substitute for torch.jit.script.

Parameters:fn – A function to compile.
Returns:If called during tracing, a ScriptFunction created by ` torch.jit.script` is returned. Otherwise, the original function fn is returned.
asteroid.utils.torch_utils.pad_x_to_y(x: <sphinx.ext.autodoc.importer._MockObject object at 0x7f61f2765d90>, y: <sphinx.ext.autodoc.importer._MockObject object at 0x7f61f2679190>, axis: int = -1) → <sphinx.ext.autodoc.importer._MockObject object at 0x7f61f26791d0>[source]

Right-pad or right-trim first argument to have same size as second argument

Parameters:
Returns:

torch.Tensor, x padded to match y’s shape.

asteroid.utils.torch_utils.load_state_dict_in(state_dict, model)[source]
Strictly loads state_dict in model, or the next submodel.
Useful to load standalone model after training it with System.
Parameters:
  • state_dict (OrderedDict) – the state_dict to load.
  • model (torch.nn.Module) – the model to load it into
Returns:

torch.nn.Module – model with loaded weights.

Note

Keys in a state_dict look like object1.object2.layer_name.weight.etc We first try to load the model in the classic way. If this fail we removes the first left part of the key to obtain object2.layer_name.weight.etc. Blindly loading with strictly=False should be done with some logging of the missing keys in the state_dict and the model.

asteroid.utils.torch_utils.are_models_equal(model1, model2)[source]

Check for weights equality between models.

Parameters:
  • model1 (nn.Module) – model instance to be compared.
  • model2 (nn.Module) – second model instance to be compared.
Returns:

bool – Whether all model weights are equal.

asteroid.utils.torch_utils.jitable_shape(tensor)[source]

Gets shape of tensor as torch.Tensor type for jit compiler

Note

Returning tensor.shape of tensor.size() directly is not torchscript compatible as return type would not be supported.

Parameters:tensor (torch.Tensor) – Tensor
Returns:torch.Tensor – Shape of tensor

Hub utils

asteroid.utils.hub_utils.cached_download(filename_or_url)[source]

Download from URL and cache the result in ASTEROID_CACHE.

Parameters:filename_or_url (str) – Name of a model as named on the Zenodo Community page (ex: "mpariente/ConvTasNet_WHAM!_sepclean"), or model id from the Hugging Face model hub (ex: "julien-c/DPRNNTasNet-ks16_WHAM_sepclean"), or a URL to a model file (ex: "https://zenodo.org/.../model.pth"), or a filename that exists locally (ex: "local/tmp_model.pth")
Returns:str, normalized path to the downloaded (or not) model
asteroid.utils.hub_utils.url_to_filename(url)[source]

Consistently convert url into a filename.

asteroid.utils.hub_utils.model_list[source]

Get the public list of all the models on huggingface with an ‘asteroid’ tag.

Generic utils

asteroid.utils.generic_utils.has_arg(fn, name)[source]

Checks if a callable accepts a given keyword argument.

Parameters:
  • fn (callable) – Callable to inspect.
  • name (str) – Check if fn can be called with name as a keyword argument.
Returns:

bool – whether fn accepts a name keyword argument.

asteroid.utils.generic_utils.flatten_dict(d, parent_key='', sep='_')[source]

Flattens a dictionary into a single-level dictionary while preserving parent keys. Taken from SO

Parameters:
  • d (MutableMapping) – Dictionary to be flattened.
  • parent_key (str) – String to use as a prefix to all subsequent keys.
  • sep (str) – String to use as a separator between two key levels.
Returns:

dict – Single-level dictionary, flattened.

asteroid.utils.generic_utils.average_arrays_in_dic(dic)[source]

Take average of numpy arrays in a dictionary.

Parameters:dic (dict) – Input dictionary to take average from
Returns:dict – New dictionary with array averaged.
asteroid.utils.generic_utils.get_wav_random_start_stop(signal_len, desired_len=32000)[source]

Get indexes for a chunk of signal of a given length.

Parameters:
  • signal_len (int) – length of the signal to trim.
  • desired_len (int) – the length of [start:stop]
Returns:

tuple – random start integer, stop integer.

asteroid.utils.generic_utils.unet_decoder_args(encoders, *, skip_connections)[source]

Get list of decoder arguments for upsampling (right) side of a symmetric u-net, given the arguments used to construct the encoder.

Parameters:
  • encoders (tuple of length N of tuples of (in_chan, out_chan, kernel_size, stride, padding)) – List of arguments used to construct the encoders
  • skip_connections (bool) – Whether to include skip connections in the calculation of decoder input channels.
Returns:

tuple of length N of tuples of (in_chan, out_chan, kernel_size, stride, padding) – Arguments to be used to construct decoders

Read the Docs v: latest
Versions
latest
stable
v0.6.0
v0.5.3
v0.5.2
v0.5.1
v0.5.0
v0.4.5
v0.4.4
v0.4.3
v0.4.2
v0.4.1
v0.4.0
v0.3.5_b
v0.3.4
v0.3.3
v0.3.2
v0.3.1
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.