
asteroid Documentation
Release 0.4.0alpha

Manuel Pariente et al.

Nov 10, 2020

Start here

1 What is Asteroid? 3

2 Installation 5

3 What is a recipe? 7

4 Datasets and tasks 11

5 Training and Evaluation 17

6 Pretrained models 19

7 FAQ 21

8 PyTorch Datasets 23

9 Filterbank API 25

10 DNN building blocks 37

11 Models 49

12 Losses & Metrics 57

13 Lightning Wrapper 75

14 Optimizers & Schedulers 77

15 DSP Modules 79

16 Utils 83

17 CLI 87

18 Asteroid High-Level Contribution Guide 89

19 How to contribute 95

20 Indices and tables 97

i

Python Module Index 99

Index 101

ii

asteroid Documentation, Release 0.4.0alpha

Asteroid is a Pytorch-based audio source separation toolkit that enables fast experimentation on common datasets. It
comes with a source code that supports a large range of datasets and architectures, and a set of recipes to reproduce
some important papers.

Start here 1

asteroid Documentation, Release 0.4.0alpha

2 Start here

CHAPTER 1

What is Asteroid?

Asteroid is a PyTorch-based audio source separation toolkit.

The main goals of Asteroid are:

• Gather a wider community around audio source separation by lowering the barriers to entry.

• Promote reproducibility by replicating important research papers.

• Automatize most engineering and make way for research.

• Simplify model sharing to reduce compute costs and carbon footprint.

So, how do we do that? We aim to provide

• PyTorch Dataset for common datasets.

• Ready-to-use state-of-the art source separation architectures in native PyTorch.

• Configurable recipes from data preparation to evaluation.

• Pretrained models for a wide variety of tasks and architectures.

1.1 Who is it for?

Asteroid has several target usage:

• Use asteroid in your own code, as a package.

• Use available recipes to build your own separation model.

• Use pretrained models to process your files.

• Hit the ground running with your research ideas!

3

asteroid Documentation, Release 0.4.0alpha

4 Chapter 1. What is Asteroid?

CHAPTER 2

Installation

By following the instructions below, first install PyTorch and then Asteroid (using either pip/dev install). We recom-
mend the development installation for users likely to modify the source code.

2.1 CUDA and PyTorch

Asteroid is based on PyTorch. To run Asteroid on GPU, you will need a CUDA-enabled PyTorch installation. Visit
this site for the instructions: https://pytorch.org/get-started/locally/.

2.2 Pip

Asteroid is regularly updated on PyPI, install the latest stable version with:

pip install asteroid

2.3 Development installation

For development installation, you can fork/clone the GitHub repo and locally install it with pip:

git clone https://github.com/mpariente/asteroid
cd asteroid
pip install -e .

This is an editable install (-e flag), it means that source code changes (or branch switching) are automatically taken
into account when importing asteroid.

5

https://pytorch.org/get-started/locally/

asteroid Documentation, Release 0.4.0alpha

6 Chapter 2. Installation

CHAPTER 3

What is a recipe?

A recipe is a set of scripts that use Asteroid to build a source separation system. Each directory corresponds to a
dataset and each subdirectory corresponds to a system build on this dataset. You can start by reading this recipe to get
familiar with them.

3.1 How is it organized?

Most recipes are organized as follows. When you clone the repo, data, exp and logswon’t be there yet, it’s normal.

data/
exp/
logs/
local/

convert_sphere2wav.sh
prepare_data.sh
conf.yml
preprocess_wham.py

utils/
parse_options.sh
prepare_python_env.sh

run.sh
train.py
model.py
eval.py

A small graph might help.

readmes/../docs/source/_static/images/code_example_croped.png

7

../docs/source/_static/images/code_example_croped.png

asteroid Documentation, Release 0.4.0alpha

3.2 How does it work?

Let’s try to summarize how recipes work :

• There is a master file, run.sh, from which all the steps are ran (install dependencies, download data, create
dataset, train a model evaluate it and so on..). This recipe style is borrowed from Kaldi and ESPnet.

– You usually have to change some variables in the top of the file (comments are around it to help you) like
data directory, python path etc..

– This script is controlled by several arguments. Among them, stage controls from where do you start the
script. You already generated the data? No need to do it again, set stage=3!

– All steps until training are dataset-specific and the corresponding scripts are stored in ./local

• The training and evaluation scripts are then called from run.sh

– There is a script, model.py, where the model should be defined along with the System subclass used
for training (if needed).

– We wrap the model definition in one function (make_model_and_optimizer). The function receives
a dictionary which is also saved in the experiment folder. This make checkpoint restoring easy without
any additional constraints.

– We also write a function to load the best model (load_best_model) after training. This is useful to
load the model several time (evaluation, separation of new examples. . .).

• The arguments flow through bash/python/yaml in a specific way, which was designed by us and suits our use-
cases until now:

– The very first step is the local/conf.yml file where is a hierarchical configuration file,

– On the python side : This file is parsed as a dictionary of dictionary in training.py. From this dict, we
create an argument parser which can accept all the second-level keys from the dictionary (so second-level
keys should be unique) as arguments and has the default values from the conf.yml file.

– On the bash side: we also parse arguments from the command line (using utils/parse_options.
sh). The arguments above the line . utils/parse_options.sh can be parsed, the rest are fixed.
Most arguments will be passed to the training script. Others control the data preparation, GPU usage etc. . .

– In light of all this the config file should have sensible default values that shouldn’t be modified by hand
much. The quickly configurable part of the recipe are added to run.sh (you want to experiment with
the batch size, add an argument in and pass it to python. If you want it fixed, no need to put it in bash,
the conf.yml file keeps it for you.) This makes it possible to directly identify the important parts of the
experiment, without reading lots of lines of argparser or bash arguments.

• Some more notes :

– After the first execution, you can go and change stage in run.sh to avoid redoing all the steps every-
time.

– To use GPUs for training, run run.sh --id 0,1where 0 and 1 are the GPUs you want to use, training
should automatically take advantage of both GPUs.

– By default, a random id is generated for each run, you can also add a tag to name the experiments
how you want. For example run.sh --tag with_cool_loss will save all results to exp/
train_{arch_name}_with_cool_loss. You’ll also find the corresponding log file in logs/
train_{arch_name}_with_cool_loss.log.

– Model loading methods suppose that the model architecture is the same as when training was performed.
Be careful when you change it.

8 Chapter 3. What is a recipe?

https://github.com/kaldi-asr/kaldi
https://github.com/espnet/espnet

asteroid Documentation, Release 0.4.0alpha

Again, you have a doubt, a question, a suggestion or a request, open an issue or join the slack, we’ll be happy to help
you.

3.2. How does it work? 9

https://github.com/mpariente/asteroid/issues/new
https://join.slack.com/t/asteroid-dev/shared_invite/zt-cn9y85t3-QNHXKD1Et7qoyzu1Ji5bcA

asteroid Documentation, Release 0.4.0alpha

10 Chapter 3. What is a recipe?

CHAPTER 4

Datasets and tasks

The following is a list of supported datasets, sorted by task. If you’re more interested in the corresponding PyTorch
Dataset, see this page

4.1 Speech separation

4.1.1 wsj0-2mix dataset

wsj0-2mix is a single channel speech separation dataset base on WSJ0. Three speaker extension (wsj0-3mix) is also
considered here.

Reference

@article{Hershey_2016,
title={Deep clustering: Discriminative embeddings for segmentation and separation},
ISBN={9781479999880},
url={http://dx.doi.org/10.1109/ICASSP.2016.7471631},
DOI={10.1109/icassp.2016.7471631},
journal={2016 IEEE International Conference on Acoustics, Speech and Signal

→˓Processing (ICASSP)},
publisher={IEEE},
author={Hershey, John R. and Chen, Zhuo and Le Roux, Jonathan and Watanabe, Shinji}

→˓,
year={2016},

}

4.1.2 WHAM dataset

WHAM! is a noisy single-channel speech separation dataset based on WSJ0. It is a noisy extension of wsj0-2mix.

More info here.

References

11

http://wham.whisper.ai/

asteroid Documentation, Release 0.4.0alpha

@inproceedings{WHAMWichern2019,
author={Gordon Wichern and Joe Antognini and Michael Flynn and Licheng Richard Zhu

→˓and Emmett McQuinn and Dwight Crow and Ethan Manilow and Jonathan Le Roux},
title={{WHAM!: extending speech separation to noisy environments}},
year=2019,
booktitle={Proc. Interspeech},
pages={1368--1372},
doi={10.21437/Interspeech.2019-2821},
url={http://dx.doi.org/10.21437/Interspeech.2019-2821}

}

4.1.3 WHAMR dataset

WHAMR! is a noisy and reverberant single-channel speech separation dataset based on WSJ0. It is a reverberant
extension of WHAM!.

Note that WHAMR! can synthesize binaural recordings, but we only consider the single channel for now.

More info here. References

@misc{maciejewski2019whamr,
title={WHAMR!: Noisy and Reverberant Single-Channel Speech Separation},
author={Matthew Maciejewski and Gordon Wichern and Emmett McQuinn and Jonathan Le

→˓Roux},
year={2019},
eprint={1910.10279},
archivePrefix={arXiv},
primaryClass={cs.SD}

}

4.1.4 LibriMix dataset

The LibriMix dataset is an open source dataset derived from LibriSpeech dataset. It’s meant as an alternative and
complement to WHAM.

More info here.

References

@misc{cosentino2020librimix,
title={LibriMix: An Open-Source Dataset for Generalizable Speech Separation},
author={Joris Cosentino and Manuel Pariente and Samuele Cornell and Antoine

→˓Deleforge and Emmanuel Vincent},
year={2020},
eprint={2005.11262},
archivePrefix={arXiv},
primaryClass={eess.AS}

}

4.1.5 Kinect-WSJ dataset

Kinect-WSJ is a reverberated, noisy version of the WSJ0-2MIX dataset. Microphones are placed on a linear array with
spacing between the devices resembling that of Microsoft Kinect ™, the device used to record the CHiME-5 dataset.

12 Chapter 4. Datasets and tasks

http://wham.whisper.ai/
https://github.com/JorisCos/LibriMix

asteroid Documentation, Release 0.4.0alpha

This was done so that we could use the real ambient noise captured as part of CHiME-5 dataset. The room impulse
responses (RIR) were simulated for a sampling rate of 16,000 Hz.

Requirements

• wsj_path : Path to precomputed wsj-2mix dataset. Should contain the folder 2speakers/wav16k/. If you don’t
have wsj_mix dataset, please create it using the scripts in egs/wsj0_mix

• chime_path : Path to chime-5 dataset. Should contain the folders train, dev and eval

• dihard_path : Path to dihard labels. Should contain *.lab files for the train and dev set

References Original repo

@inproceedings{sivasankaran2020,
booktitle = {2020 28th {{European Signal Processing Conference}} ({{EUSIPCO}})},
title={Analyzing the impact of speaker localization errors on speech separation for

→˓automatic speech recognition},
author={Sunit Sivasankaran and Emmanuel Vincent and Dominique Fohr},
year={2021},
month = Jan,

}

4.1.6 SMS_WSJ dataset

SMS_WSJ (stands for Spatialized Multi-Speaker Wall Street Journal) is a multichannel source separation dataset,
based on WSJ0 and WSJ1.

All the information regarding the dataset can be found in this repo.

References If you use this dataset, please cite the corresponding paper as follows :

@Article{SmsWsj19,
author = {Drude, Lukas and Heitkaemper, Jens and Boeddeker, Christoph and Haeb-

→˓Umbach, Reinhold},
title = {{SMS-WSJ}: Database, performance measures, and baseline recipe for

→˓multi-channel source separation and recognition},
journal = {arXiv preprint arXiv:1910.13934},
year = {2019},

}

4.2 Speech enhancement

4.2.1 DNS Challenge’s dataset

The Deep Noise Suppression (DNS) Challenge is a single-channel speech enhancement challenge organized by Mi-
crosoft, with a focus on real-time applications. More info can be found on the official page.

References

• The challenge paper, here. .. code-block:: BibTex

@misc{DNSChallenge2020, title={The INTERSPEECH 2020 Deep Noise Suppression Challenge:
Datasets, Subjective Speech Quality and Testing Framework}, author={Chandan K. A. Reddy and
Ebrahim Beyrami and Harishchandra Dubey and Vishak Gopal and Roger Cheng and Ross Cutler
and Sergiy Matusevych and Robert Aichner and Ashkan Aazami and Sebastian Braun and Puneet
Rana and Sriram Srinivasan and Johannes Gehrke}, year={2020}, eprint={2001.08662}, }

4.2. Speech enhancement 13

https://github.com/sunits/Reverberated_WSJ_2MIX/
https://github.com/fgnt/sms_wsj
https://dns-challenge.azurewebsites.net/
https://arxiv.org/abs/2001.08662

asteroid Documentation, Release 0.4.0alpha

• The baseline paper, here. .. code-block:: BibTex

@misc{xia2020weighted, title={Weighted Speech Distortion Losses for Neural-network-based
Real-time Speech Enhancement}, author={Yangyang Xia and Sebastian Braun and Chandan
K. A. Reddy and Harishchandra Dubey and Ross Cutler and Ivan Tashev}, year={2020},
eprint={2001.10601}, }

4.3 Music source separation

4.3.1 MUSDB18 Dataset

The musdb18 is a dataset of 150 full lengths music tracks (~10h duration) of different genres along with their isolated
drums, bass, vocals and others stems.

More info here.

4.4 Environmental sound separation

4.4.1 FUSS dataset

The Free Universal Sound Separation (FUSS) dataset comprises audio mixtures of arbitrary sounds with source refer-
ences for use in experiments on arbitrary sound separation.

All the information related to this dataset can be found in this repo.

References If you use this dataset, please cite the corresponding paper as follows:

@Article{Wisdom2020,
author = {Scott Wisdom and Hakan Erdogan and Daniel P. W. Ellis and Romain

→˓Serizel and Nicolas Turpault and Eduardo Fonseca and Justin Salamon and Prem
→˓Seetharaman and John R. Hershey},
title = {What's All the FUSS About Free Universal Sound Separation Data?},
journal = {in preparation},
year = {2020},

}

4.5 Audio-visual source separation

4.5.1 AVSpeech dataset

AVSpeech is an audio-visual speech separation dataset which was introduced by Google in this article Looking to
Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech Separation.

More info here.

References

@article{Ephrat_2018,
title={Looking to listen at the cocktail party},
volume={37},
url={http://dx.doi.org/10.1145/3197517.3201357},

(continues on next page)

14 Chapter 4. Datasets and tasks

https://arxiv.org/abs/2001.10601
https://sigsep.github.io/datasets/musdb.html
https://github.com/google-research/sound-separation/tree/master/datasets/fuss
https://arxiv.org/abs/1804.03619
https://arxiv.org/abs/1804.03619
https://looking-to-listen.github.io/avspeech/download.html

asteroid Documentation, Release 0.4.0alpha

(continued from previous page)

DOI={10.1145/3197517.3201357},
journal={ACM Transactions on Graphics},
publisher={Association for Computing Machinery (ACM)},
author={Ephrat, Ariel and Mosseri, Inbar and Lang, Oran and Dekel, Tali and Wilson,

→˓ Kevin and Hassidim, Avinatan and Freeman, William T. and Rubinstein, Michael},
year={2018},
pages={1-11}

}

4.6 Speaker extraction

4.6. Speaker extraction 15

asteroid Documentation, Release 0.4.0alpha

16 Chapter 4. Datasets and tasks

CHAPTER 5

Training and Evaluation

Training and evaluation are the two essential parts of the recipes. For training, we offer a thin wrapper around Py-
TorchLightning that seamlessly enables distributed training, experiment logging and more, without sacrificing flexi-
bility. For evaluation we released pb_bss_eval on PyPI, which is the evaluation part of pb_bss. All the credit goes
to the original authors from the Paderborn University.

5.1 Training with PyTorchLightning

First, have a look here for an overview of PyTorchLightning. As you saw, the LightningModule is a central class
of PyTorchLightning where a large part of the research-related logic lives. Instead of subclassing it everytime, we use
System, a thin wrapper that separately gathers the essential parts of every deep learning project:

1. A model

2. Optimizer

3. Loss function

4. Train/val data

class System(pl.LightningModule):
def __init__(self, model, optimizer, loss_func, train_loader, val_loader):

...

def common_step(self, batch):
""" common_step is the method that'll be called at both train/val time. """

inputs, targets = batch
est_targets = self(inputs)
loss = self.loss_func(est_targets, targets)
return loss

Only overwriting common_step will often be enough to obtain a desired behavior, while avoiding boilerplate code.
Then, we can use the native PyTorchLightning Trainer to train the models.

17

https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/fgnt/pb_bss
https://pytorch-lightning.readthedocs.io/en/latest/introduction_guide.html

asteroid Documentation, Release 0.4.0alpha

5.2 Evaluation

Asteroid’s function compute_metrics that calls pb_bss_eval is used to compute the following common source
separation metrics:

• SDR / SIR / SAR

• STOI

• PESQ

• SI-SDR

18 Chapter 5. Training and Evaluation

CHAPTER 6

Pretrained models

Asteroid provides pretrained models through the Asteroid community in Zenodo. Have a look at the Zenodo page to
choose which model you want to use.

Enjoy having pretrained models? Please share your models if you train some, we made it simple with the
asteroid-upload CLI, check the next sections.

6.1 Using them

Loading a pretrained model is super simple!

from asteroid.models import ConvTasNet
model = ConvTasNet.from_pretrained('mpariente/ConvTasNet_WHAM!_sepclean')

Use the search page if you want to narrow your search.

You can also load it with Hub

from torch import hub
model = hub.load('mpariente/asteroid', 'conv_tasnet', 'mpariente/ConvTasNet_WHAM!_
→˓sepclean')

6.2 Model caching

When using a from_pretrained method, the model is downloaded and cached. The cache directory is either the
value in the $ASTEROID_CACHE environment variable, or ~/.cache/torch/asteroid.

19

https://zenodo.org/communities/asteroid-models
https://zenodo.org/communities/asteroid-models/search

asteroid Documentation, Release 0.4.0alpha

6.3 Share your models

At the end of each sharing-enabled recipe, all the necessary infos are gathered into a file, the only thing that’s left to
do is to run

asteroid-upload exp/your_exp_dir/publish_dir --uploader "Name Here"

Ok, not really. First you need to register to Zenodo (Sign in with GitHub: ok), create a token and use it with the
--token option of the CLI, or by setting the ACCESS_TOKEN environment variable. If you plan to upload more
models (and you should :innocent:), you can fill in your infos in uploader_info.yml at the root, like this.

uploader: Manuel Pariente
affiliation: INRIA
git_username: mpariente
token: TOKEN_HERE

6.4 Note about licenses

All Asteroid’s pretrained models are shared under the Attribution-ShareAlike 3.0 (CC BY-SA 3.0) license. This means
that models are released under the same license as the original training data. If any non-commercial data is used
during training (wsj0, WHAM’s noises etc..), the models are non-commercial use only. This is indicated in the
bottom of the corresponding Zenodo page (ex: here).

20 Chapter 6. Pretrained models

https://zenodo.org/
https://zenodo.org/account/settings/applications/tokens/new/
https://creativecommons.org/licenses/by-sa/3.0/
https://zenodo.org/record/3903795#collapseTwo

CHAPTER 7

FAQ

7.1 My results are worse than the ones reported in the README,
why?

There are few possibilities here:

1. Your data is wrong. We had this examples with wsj0-mix, WHAM etc.. where wv2 was used instead of wv1 to
generate the data. This was fixed in #166. Chances are there is a pretrained model available for the given dataset, run
the evaluation with it. If your results are different, it’s a data problem. Refs: #164, #165 and #188.

2. You stopped training too early. We’ve seen this happen, specially with DPRNN. Be sure that your training/validation
losses are completely flat at the end of training. Need to attach a DPRNN log here.

3. If it’s not both, there is a real bug and we’re happy you caught it! Please, open an issue with your
torch/pytorch_lightning/asteroid versions to let us know.

7.2 How long does it take to train a model?

Need a log here.

7.3 Can I use the pretrained models for commercial purposes?

Not always. See the note on pretrained models Licenses Note about licenses

7.4 Separated audio is really bad, what is happening?

There are several possible cause to this, a common one is clipping. 1. When training with scale invariant losses (e.g.
SI-SNR) the audio output can be unbounded. However, waveform values should be normalized to [-1, 1] range before

21

https://github.com/mpariente/asteroid/pull/166
https://github.com/mpariente/asteroid/issues/164
https://github.com/mpariente/asteroid/issues/165
https://github.com/mpariente/asteroid/issues/188

asteroid Documentation, Release 0.4.0alpha

saving, otherwise they will be clipped. See Clipping on Wikipedia and issue #250

22 Chapter 7. FAQ

https://en.wikipedia.org/wiki/Clipping_(audio)
https://github.com/mpariente/asteroid/issues/250

CHAPTER 8

PyTorch Datasets

This page lists the supported datasets and their corresponding PyTorch’s Dataset class. If you’re interested in the
datasets more than in the code, see this page.

8.1 LibriMix

8.2 Wsj0mix

8.3 WHAM!

8.4 WHAMR!

8.5 SMS-WSJ

8.6 KinectWSJMix

8.7 DNSDataset

8.8 MUSDB18

8.9 FUSS

8.10 AVSpeech

23

asteroid Documentation, Release 0.4.0alpha

24 Chapter 8. PyTorch Datasets

CHAPTER 9

Filterbank API

9.1 Filterbank, Encoder and Decoder

class asteroid.filterbanks.Filterbank(n_filters, kernel_size, stride=None)
Bases: sphinx.ext.autodoc.importer._MockObject

Base Filterbank class. Each subclass has to implement a filters property.

Parameters

• n_filters (int) – Number of filters.

• kernel_size (int) – Length of the filters.

• stride (int, optional) – Stride of the conv or transposed conv. (Hop size). If None
(default), set to kernel_size // 2.

Variables n_feats_out (int) – Number of output filters.

get_config()
Returns dictionary of arguments to re-instantiate the class.

filters
Abstract method for filters.

class asteroid.filterbanks.Encoder(filterbank, is_pinv=False, as_conv1d=True, padding=0)
Bases: asteroid.filterbanks.enc_dec._EncDec

Encoder class.

Add encoding methods to Filterbank classes. Not intended to be subclassed.

Parameters

• filterbank (Filterbank) – The filterbank to use as an encoder.

• is_pinv (bool) – Whether to be the pseudo inverse of filterbank.

25

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

asteroid Documentation, Release 0.4.0alpha

• as_conv1d (bool) – Whether to behave like nn.Conv1d. If True (default), forwarding
input with shape (batch, 1, time) will output a tensor of shape (batch, freq, conv_time). If
False, will output a tensor of shape (batch, 1, freq, conv_time).

• padding (int) – Zero-padding added to both sides of the input.

forward(waveform)
Convolve input waveform with the filters from a filterbank. :param waveform: any tensor with samples
along the

last dimension. The waveform representation with and batch/channel etc.. dimension.

Returns torch.Tensor – The corresponding TF domain signal.

Shapes:

>>> (time,) --> (freq, conv_time)
>>> (batch, time) --> (batch, freq, conv_time) # Avoid
>>> if as_conv1d:
>>> (batch, 1, time) --> (batch, freq, conv_time)
>>> (batch, chan, time) --> (batch, chan, freq, conv_time)
>>> else:
>>> (batch, chan, time) --> (batch, chan, freq, conv_time)
>>> (batch, any, dim, time) --> (batch, any, dim, freq, conv_time)

classmethod pinv_of(filterbank, **kwargs)
Returns an Encoder, pseudo inverse of a Filterbank or Decoder.

class asteroid.filterbanks.Decoder(filterbank, is_pinv=False, padding=0, output_padding=0)
Bases: asteroid.filterbanks.enc_dec._EncDec

Decoder class.

Add decoding methods to Filterbank classes. Not intended to be subclassed.

Parameters

• filterbank (Filterbank) – The filterbank to use as an decoder.

• is_pinv (bool) – Whether to be the pseudo inverse of filterbank.

• padding (int) – Zero-padding added to both sides of the input.

• output_padding (int) – Additional size added to one side of the output shape.

Notes padding and output_padding arguments are directly passed to F.conv_transpose1d.

forward(spec)
Applies transposed convolution to a TF representation.

This is equivalent to overlap-add.

Parameters spec (torch.Tensor) – 3D or 4D Tensor. The TF representation. (Output of
Encoder.forward()).

Returns torch.Tensor – The corresponding time domain signal.

classmethod pinv_of(filterbank)
Returns an Decoder, pseudo inverse of a filterbank or Encoder.

class asteroid.filterbanks.make_enc_dec
Creates congruent encoder and decoder from the same filterbank family.

26 Chapter 9. Filterbank API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

Parameters

• fb_name (str, className) – Filterbank family from which to make encoder and de-
coder. To choose among ['free', 'analytic_free', 'param_sinc', 'stft'].
Can also be a class defined in a submodule in this subpackade (e.g. FreeFB).

• n_filters (int) – Number of filters.

• kernel_size (int) – Length of the filters.

• stride (int, optional) – Stride of the convolution. If None (default), set to
kernel_size // 2.

• who_is_pinv (str, optional) – If None, no pseudo-inverse filters will be used. If
string (among ['encoder', 'decoder']), decides which of Encoder or Decoder
will be the pseudo inverse of the other one.

• padding (int) – Zero-padding added to both sides of the input. Passed to Encoder and
Decoder.

• output_padding (int) – Additional size added to one side of the output shape. Passed
to Decoder.

• **kwargs – Arguments which will be passed to the filterbank class additionally to the
usual n_filters, kernel_size and stride. Depends on the filterbank family.

Returns Encoder, Decoder

class asteroid.filterbanks.get
Returns a filterbank class from a string. Returns its input if it is callable (already a Filterbank for example).

Parameters identifier (str or Callable or None) – the filterbank identifier.

Returns Filterbank or None

9.2 Learnable filterbanks

9.2.1 Free

class asteroid.filterbanks.free_fb.FreeFB(n_filters, kernel_size, stride=None, **kwargs)
Bases: asteroid.filterbanks.enc_dec.Filterbank

Free filterbank without any constraints. Equivalent to nn.Conv1d.

Parameters

• n_filters (int) – Number of filters.

• kernel_size (int) – Length of the filters.

• stride (int, optional) – Stride of the convolution. If None (default), set to
kernel_size // 2.

Variables n_feats_out (int) – Number of output filters.

References

[1] : “Filterbank design for end-to-end speech separation”. Submitted to ICASSP 2020. Manuel Pariente,
Samuele Cornell, Antoine Deleforge, Emmanuel Vincent.

9.2. Learnable filterbanks 27

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

filters
Abstract method for filters.

9.2.2 Analytic Free

class asteroid.filterbanks.analytic_free_fb.AnalyticFreeFB(n_filters, ker-
nel_size, stride=None,
**kwargs)

Bases: asteroid.filterbanks.enc_dec.Filterbank

Free analytic (fully learned with analycity constraints) filterbank. For more details, see [1].

Parameters

• n_filters (int) – Number of filters. Half of n_filters will have parameters, the other
half will be the hilbert transforms. n_filters should be even.

• kernel_size (int) – Length of the filters.

• stride (int, optional) – Stride of the convolution. If None (default), set to
kernel_size // 2.

Variables n_feats_out (int) – Number of output filters.

References

[1] : “Filterbank design for end-to-end speech separation”. Submitted to ICASSP 2020. Manuel Pariente,
Samuele Cornell, Antoine Deleforge, Emmanuel Vincent.

filters
Abstract method for filters.

9.2.3 Parameterized Sinc

class asteroid.filterbanks.param_sinc_fb.ParamSincFB(n_filters, kernel_size,
stride=None, sam-
ple_rate=16000,
min_low_hz=50,
min_band_hz=50)

Bases: asteroid.filterbanks.enc_dec.Filterbank

Extension of the parameterized filterbank from [1] proposed in [2]. Modified and extended from from https:
//github.com/mravanelli/SincNet

Parameters

• n_filters (int) – Number of filters. Half of n_filters (the real parts) will have parame-
ters, the other half will correspond to the imaginary parts. n_filters should be even.

• kernel_size (int) – Length of the filters.

• stride (int, optional) – Stride of the convolution. If None (default), set to
kernel_size // 2.

• sample_rate (int, optional) – The sample rate (used for initialization).

• min_low_hz (int, optional) – Lowest low frequency allowed (Hz).

• min_band_hz (int, optional) – Lowest band frequency allowed (Hz).

28 Chapter 9. Filterbank API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://github.com/mravanelli/SincNet
https://github.com/mravanelli/SincNet
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

Variables n_feats_out (int) – Number of output filters.

References

[1] : “Speaker Recognition from raw waveform with SincNet”. SLT 2018. Mirco Ravanelli, Yoshua Bengio.
https://arxiv.org/abs/1808.00158

[2] : “Filterbank design for end-to-end speech separation”. Submitted to ICASSP 2020. Manuel Pariente,
Samuele Cornell, Antoine Deleforge, Emmanuel Vincent. https://arxiv.org/abs/1910.10400

get_config()
Returns dictionary of arguments to re-instantiate the class.

filters
Compute filters from parameters

9.3 Fixed filterbanks

9.3.1 STFT

class asteroid.filterbanks.stft_fb.STFTFB(n_filters, kernel_size, stride=None, win-
dow=None, **kwargs)

Bases: asteroid.filterbanks.enc_dec.Filterbank

STFT filterbank.

Parameters

• n_filters (int) – Number of filters. Determines the length of the STFT filters before
windowing.

• kernel_size (int) – Length of the filters (i.e the window).

• stride (int, optional) – Stride of the convolution (hop size). If None (default), set
to kernel_size // 2.

• window (numpy.ndarray, optional) – If None, defaults to np.sqrt(np.
hanning()).

Variables n_feats_out (int) – Number of output filters.

filters
Abstract method for filters.

asteroid.filterbanks.stft_fb.perfect_synthesis_window(analysis_window, hop_size)

Computes a window for perfect synthesis given an analysis window and a hop size.

Parameters

• analysis_window (np.array) – Analysis window of the transform.

• hop_size (int) – Hop size in number of samples.

Returns np.array – the synthesis window to use for perfectly inverting the STFT.

9.3. Fixed filterbanks 29

https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1808.00158
https://arxiv.org/abs/1910.10400
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

9.3.2 MP-GTFB

class asteroid.filterbanks.multiphase_gammatone_fb.MultiphaseGammatoneFB(n_filters=128,
ker-
nel_size=16,
sam-
ple_rate=8000,
stride=None,
**kwargs)

Bases: asteroid.filterbanks.enc_dec.Filterbank

Multi-Phase Gammatone Filterbank as described in [1]. Please cite [1] whenever using this. Original code
repository: <https://github.com/sp-uhh/mp-gtf>

Parameters

• n_filters (int) – Number of filters.

• kernel_size (int) – Length of the filters.

• sample_rate (int, optional) – The sample rate (used for initialization).

• stride (int, optional) – Stride of the convolution. If None (default), set to
kernel_size // 2.

References: [1] David Ditter, Timo Gerkmann, “A Multi-Phase Gammatone Filterbank for

Speech Separation via TasNet”, ICASSP 2020 Available: <https://ieeexplore.ieee.org/document/9053602/>

filters
Abstract method for filters.

asteroid.filterbanks.multiphase_gammatone_fb.erb_scale_2_freq_hz(freq_erb)
Convert frequency on ERB scale to frequency in Hertz

asteroid.filterbanks.multiphase_gammatone_fb.freq_hz_2_erb_scale(freq_hz)
Convert frequency in Hertz to frequency on ERB scale

asteroid.filterbanks.multiphase_gammatone_fb.gammatone_impulse_response(samplerate_hz,
len_sec,
cen-
ter_freq_hz,
phase_shift)

Generate single parametrized gammatone filter

asteroid.filterbanks.multiphase_gammatone_fb.normalize_filters(filterbank)
Normalizes a filterbank such that all filters have the same root mean square (RMS).

9.4 Transforms

9.4.1 Griffin-Lim and MISI

asteroid.filterbanks.griffin_lim.griffin_lim(mag_specgram, stft_enc, angles=None,
istft_dec=None, n_iter=6, momen-
tum=0.9)

Estimates matching phase from magnitude spectogram using the ‘fast’ Griffin Lim algorithm [1].

Parameters

30 Chapter 9. Filterbank API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

• mag_specgram (torch.Tensor) – (any, dim, ension, freq, frames) as returned by En-
coder(STFTFB), the magnitude spectrogram to be inverted.

• stft_enc (Encoder[STFTFB]) – The Encoder(STFTFB()) object that was used to
compute the input mag_spec.

• angles (None or Tensor) – Angles to use to initialize the algorithm. If None (de-
fault), angles are init with uniform ditribution.

• istft_dec (None or Decoder[STFTFB]) – Optional Decoder to use to get back to
the time domain. If None (default), a perfect reconstruction Decoder is built from stft_enc.

• n_iter (int) – Number of griffin-lim iterations to run.

• momentum (float) – The momentum of fast Griffin-Lim. Original Griffin-Lim is ob-
tained for momentum=0.

Returns torch.Tensor – estimated waveforms of shape (any, dim, ension, time).

Examples

>>> stft = Encoder(STFTFB(n_filters=256, kernel_size=256, stride=128))
>>> wav = torch.randn(2, 1, 8000)
>>> spec = stft(wav)
>>> masked_spec = spec * torch.sigmoid(torch.randn_like(spec))
>>> mag = transforms.take_mag(masked_spec, -2)
>>> est_wav = griffin_lim(mag, stft, n_iter=32)

References

[1] Perraudin et al. “A fast Griffin-Lim algorithm,” WASPAA 2013. [2] D. W. Griffin and J. S. Lim: “Signal
estimation from modified short-time Fourier transform,” ASSP 1984.

asteroid.filterbanks.griffin_lim.misi(mixture_wav, mag_specgrams, stft_enc, an-
gles=None, istft_dec=None, n_iter=6, momen-
tum=0.0, src_weights=None, dim=1)

Jointly estimates matching phase from magnitude spectograms using the Multiple Input Spectrogram Inversion
(MISI) algorithm [1].

Parameters

• mixture_wav (torch.Tensor) – (batch, time)

• mag_specgrams (torch.Tensor) – (batch, n_src, freq, frames) as returned by En-
coder(STFTFB), the magnitude spectrograms to be jointly inverted using MISI (modified or
not).

• stft_enc (Encoder[STFTFB]) – The Encoder(STFTFB()) object that was used to
compute the input mag_spec.

• angles (None or Tensor) – Angles to use to initialize the algorithm. If None (de-
fault), angles are init with uniform ditribution.

• istft_dec (None or Decoder[STFTFB]) – Optional Decoder to use to get back to
the time domain. If None (default), a perfect reconstruction Decoder is built from stft_enc.

• n_iter (int) – Number of MISI iterations to run.

• momentum (float) – Momentum on updates (this argument comes from GriffinLim).
Defaults to 0 as it was never proposed anywhere.

9.4. Transforms 31

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

asteroid Documentation, Release 0.4.0alpha

• src_weights (None or torch.Tensor) – Consistency weight for each source.
Shape needs to be broadcastable to istft_dec(mag_specgrams). We make sure that the
weights sum up to 1 along dim dim. If src_weights is None, compute them based on relative
power.

• dim (int) – Axis which contains the sources in mag_specgrams. Used for consistency
constraint.

Returns torch.Tensor – estimated waveforms of shape (batch, n_src, time).

Examples

>>> stft = Encoder(STFTFB(n_filters=256, kernel_size=256, stride=128))
>>> wav = torch.randn(2, 3, 8000)
>>> specs = stft(wav)
>>> masked_specs = specs * torch.sigmoid(torch.randn_like(specs))
>>> mag = transforms.take_mag(masked_specs, -2)
>>> est_wav = misi(wav.sum(1), mag, stft, n_iter=32)

References

[1] Gunawan and Sen, “Iterative Phase Estimation for the Synthesis of Separated Sources From Single-Channel
Mixtures,” in IEEE Signal Processing Letters, 2010. [2] Wang, LeRoux et al. “End-to-End Speech Separation
with Unfolded Iterative Phase Reconstruction.” Interspeech 2018 (2018)

9.4.2 Complex transforms

asteroid.filterbanks.transforms.angle(tensor, dim=-2)
Return the angle of the complex-like torch tensor.

Parameters

• tensor (torch.Tensor) – the complex tensor from which to extract the phase.

• dim (int, optional) – the frequency (or equivalent) dimension along which real and
imaginary values are concatenated.

Returns torch.Tensor – The counterclockwise angle from the positive real axis on the complex
plane in radians.

asteroid.filterbanks.transforms.apply_complex_mask(tf_rep, mask, dim=-2)
Applies a complex-valued mask to a complex-valued representation.

Operands are assumed to have the real parts of each entry followed by the imaginary parts of each entry along
dimension dim, e.g. for, dim = 1, the matrix

is interpreted as

where j is such that j * j = -1.

Parameters

• tf_rep (torch.Tensor) – The time frequency representation to apply the mask to.

• (class (mask) – torch.Tensor): The complex-valued mask to be applied.

• dim (int) – The frequency (or equivalent) dimension of both tf_rep an mask along which
real and imaginary values are concatenated.

32 Chapter 9. Filterbank API

https://docs.python.org/3/library/constants.html#None
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

Returns torch.Tensor – tf_rep multiplied by the mask in the complex sense.

asteroid.filterbanks.transforms.apply_mag_mask(tf_rep, mask, dim=-2)
Applies a real-valued mask to a complex-valued representation.

If tf_rep has 2N elements along dim, mask has N elements, mask is duplicated along dim to apply the same mask
to both the Re and Im.

tf_rep is assumed to have the real parts of each entry followed by the imaginary parts of each entry along
dimension dim, e.g. for, dim = 1, the matrix

is interpreted as

where j is such that j * j = -1.

Parameters

• tf_rep (torch.Tensor) – The time frequency representation to apply the mask to. Re
and Im are concatenated along dim.

• mask (torch.Tensor) – The real-valued mask to be applied.

• dim (int) – The frequency (or equivalent) dimension of both tf_rep and mask along which
real and imaginary values are concatenated.

Returns torch.Tensor – tf_rep multiplied by the mask.

asteroid.filterbanks.transforms.apply_real_mask(tf_rep, mask, dim=-2)
Applies a real-valued mask to a real-valued representation.

It corresponds to ReIm mask in [1].

Parameters

• tf_rep (torch.Tensor) – The time frequency representation to apply the mask to.

• mask (torch.Tensor) – The real-valued mask to be applied.

• dim (int) – Kept to have the same interface with the other ones.

Returns torch.Tensor – tf_rep multiplied by the mask.

asteroid.filterbanks.transforms.check_complex(tensor, dim=-2)
Assert that tensor is an Asteroid-style complex in a given dimension.

Parameters

• tensor (torch.Tensor) – tensor to be checked.

• dim (int) – the frequency (or equivalent) dimension along which real and imaginary values
are concatenated.

Raises AssertionError if dimension is not even in the specified dimension

asteroid.filterbanks.transforms.check_torchaudio_complex(tensor)
Assert that tensor is Torchaudo-style complex-like (last dimension is 2).

Parameters tensor (torch.Tensor) – tensor to be checked.

Raises AssertionError if last dimension is != 2.

asteroid.filterbanks.transforms.ebased_vad(mag_spec, th_db=40)
Compute energy-based VAD from a magnitude spectrogram (or equivalent).

Parameters

9.4. Transforms 33

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

• mag_spec (torch.Tensor) – the spectrogram to perform VAD on. Expected shape
(batch, *, freq, time). The VAD mask will be computed independently for all the leading
dimensions until the last two. Independent of the ordering of the last two dimensions.

• th_db (int) – The threshold in dB from which a TF-bin is considered silent.

Returns torch.BoolTensor, the VAD mask.

Examples

>>> import torch
>>> mag_spec = torch.abs(torch.randn(10, 2, 65, 16))
>>> batch_src_mask = ebased_vad(mag_spec)

asteroid.filterbanks.transforms.from_mag_and_phase(mag, phase, dim=-2)
Return a complex-like torch tensor from magnitude and phase components.

Parameters

• mag (torch.tensor) – magnitude of the tensor.

• phase (torch.tensor) – angle of the tensor

• dim (int, optional) – the frequency (or equivalent) dimension along which real and
imaginary values are concatenated.

Returns torch.Tensor – The corresponding complex-like torch tensor.

asteroid.filterbanks.transforms.from_numpy(array, dim=-2)
Convert complex numpy array to complex-like torch tensor.

Parameters

• array (np.array) – array to be converted.

• dim (int, optional) – the frequency (or equivalent) dimension along which real and
imaginary values are concatenated.

Returns torch.Tensor – Corresponding torch.Tensor (complex axis in dim ‘dim‘=

asteroid.filterbanks.transforms.from_torchaudio(tensor, dim=-2)
Converts torchaudio style complex tensor to complex-like torch tensor.

Parameters

• tensor (torch.tensor) – torchaudio-style complex-like torch tensor.

• dim (int, optional) – the frequency (or equivalent) dimension along which real and
imaginary values are concatenated.

Returns torch.Tensor – asteroid-style complex-like torch tensor.

asteroid.filterbanks.transforms.is_asteroid_complex(tensor, dim=-2)
Check if tensor is complex-like in a given dimension.

Parameters

• tensor (torch.Tensor) – tensor to be checked.

• dim (int) – the frequency (or equivalent) dimension along which real and imaginary values
are concatenated.

Returns True if dimension is even in the specified dimension, otherwise False

34 Chapter 9. Filterbank API

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

asteroid.filterbanks.transforms.is_torchaudio_complex(x)
Check if tensor is Torchaudio-style complex-like (last dimension is 2).

Parameters tensor (torch.Tensor) – tensor to be checked.

Returns True if last dimension is 2, else False.

asteroid.filterbanks.transforms.mul_c(inp, other, dim=-2)
Entrywise product for complex valued tensors.

Operands are assumed to have the real parts of each entry followed by the imaginary parts of each entry along
dimension dim, e.g. for, dim = 1, the matrix

is interpreted as

where j is such that j * j = -1.

Parameters

• inp (torch.Tensor) – The first operand with real and imaginary parts concatenated on
the dim axis.

• other (torch.Tensor) – The second operand.

• dim (int, optional) – frequency (or equivalent) dimension along which real and
imaginary values are concatenated.

Returns

torch.Tensor – The complex multiplication between inp and other

For now, it assumes that other has the same shape as inp along dim.

asteroid.filterbanks.transforms.take_mag(x, dim=-2)
Takes the magnitude of a complex tensor.

The operands is assumed to have the real parts of each entry followed by the imaginary parts of each entry along
dimension dim, e.g. for, dim = 1, the matrix

is interpreted as

where j is such that j * j = -1.

Parameters

• x (torch.Tensor) – Complex valued tensor.

• dim (int) – frequency (or equivalent) dimension along which real and imaginary values
are concatenated.

Returns torch.Tensor – The magnitude of x.

asteroid.filterbanks.transforms.to_numpy(tensor, dim=-2)
Convert complex-like torch tensor to numpy complex array

Parameters

• tensor (torch.Tensor) – Complex tensor to convert to numpy.

• dim (int, optional) – the frequency (or equivalent) dimension along which real and
imaginary values are concatenated.

Returns numpy.array – Corresponding complex array.

asteroid.filterbanks.transforms.to_torchaudio(tensor, dim=-2)
Converts complex-like torch tensor to torchaudio style complex tensor.

Parameters

9.4. Transforms 35

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

• tensor (torch.tensor) – asteroid-style complex-like torch tensor.

• dim (int, optional) – the frequency (or equivalent) dimension along which real and
imaginary values are concatenated.

Returns torch.Tensor – torchaudio-style complex-like torch tensor.

36 Chapter 9. Filterbank API

https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor

CHAPTER 10

DNN building blocks

10.1 Convolutional blocks

class asteroid.masknn.convolutional.Conv1DBlock(in_chan, hid_chan, skip_out_chan,
kernel_size, padding, dilation,
norm_type=’gLN’)

Bases: sphinx.ext.autodoc.importer._MockObject

One dimensional convolutional block, as proposed in [1].

Parameters

• in_chan (int) – Number of input channels.

• hid_chan (int) – Number of hidden channels in the depth-wise convolution.

• skip_out_chan (int) – Number of channels in the skip convolution. If 0 or None,
Conv1DBlock won’t have any skip connections. Corresponds to the the block in v1 or the
paper. The forward return res instead of [res, skip] in this case.

• kernel_size (int) – Size of the depth-wise convolutional kernel.

• padding (int) – Padding of the depth-wise convolution.

• dilation (int) – Dilation of the depth-wise convolution.

• norm_type (str, optional) – Type of normalization to use. To choose from

– 'gLN': global Layernorm

– 'cLN': channelwise Layernorm

– 'cgLN': cumulative global Layernorm

References

[1] : “Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation” TASLP 2019
Yi Luo, Nima Mesgarani https://arxiv.org/abs/1809.07454

37

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://arxiv.org/abs/1809.07454

asteroid Documentation, Release 0.4.0alpha

forward(x)
Input shape [batch, feats, seq]

class asteroid.masknn.convolutional.DCUMaskNet(encoders, decoders,
mask_bound=’tanh’, **kwargs)

Bases: asteroid.masknn.base.BaseDCUMaskNet

Masking part of DCUNet, as proposed in [1].

Valid architecture values for the default_architecture classmethod are: “Large-DCUNet-20”,
“DCUNet-20”, “DCUNet-16”, “DCUNet-10”.

References

[1] : “Phase-aware Speech Enhancement with Deep Complex U-Net”, Hyeong-Seok Choi et al. https://arxiv.
org/abs/1903.03107

class asteroid.masknn.convolutional.DCUNetComplexDecoderBlock(in_chan,
out_chan,
kernel_size,
stride, padding,
norm_type=’bN’,
activa-
tion=’leaky_relu’)

Bases: sphinx.ext.autodoc.importer._MockObject

Decoder block as proposed in [1].

Parameters

• in_chan (int) – Number of input channels.

• out_chan (int) – Number of output channels.

• kernel_size (Tuple[int, int]) – Convolution kernel size.

• stride (Tuple[int, int]) – Convolution stride.

• padding (Tuple[int, int]) – Convolution padding.

• norm_type (str, optional) – Type of normalization to use. See asteroid.
masknn.norms for valid values.

• activation (str, optional) – Type of activation to use. See asteroid.
masknn.activations for valid values.

References

[1] : “Phase-aware Speech Enhancement with Deep Complex U-Net”, Hyeong-Seok Choi et al. https://arxiv.
org/abs/1903.03107

class asteroid.masknn.convolutional.DCUNetComplexEncoderBlock(in_chan,
out_chan,
kernel_size,
stride, padding,
norm_type=’bN’,
activa-
tion=’leaky_relu’)

Bases: sphinx.ext.autodoc.importer._MockObject

Encoder block as proposed in [1].

38 Chapter 10. DNN building blocks

https://arxiv.org/abs/1903.03107
https://arxiv.org/abs/1903.03107
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://arxiv.org/abs/1903.03107
https://arxiv.org/abs/1903.03107

asteroid Documentation, Release 0.4.0alpha

Parameters

• in_chan (int) – Number of input channels.

• out_chan (int) – Number of output channels.

• kernel_size (Tuple[int, int]) – Convolution kernel size.

• stride (Tuple[int, int]) – Convolution stride.

• padding (Tuple[int, int]) – Convolution padding.

• norm_type (str, optional) – Type of normalization to use. See asteroid.
masknn.norms for valid values.

• activation (str, optional) – Type of activation to use. See asteroid.
masknn.activations for valid values.

References

[1] : “Phase-aware Speech Enhancement with Deep Complex U-Net”, Hyeong-Seok Choi et al. https://arxiv.
org/abs/1903.03107

class asteroid.masknn.convolutional.SuDORMRF(in_chan, n_src, bn_chan=128,
num_blocks=16, upsampling_depth=4,
mask_act=’softmax’)

Bases: sphinx.ext.autodoc.importer._MockObject

SuDORMRF mask network, as described in [1].

Parameters

• in_chan (int) – Number of input channels. Also number of output channels.

• n_src (int) – Number of sources in the input mixtures.

• bn_chan (int, optional) – Number of bins in the bottleneck layer and the UNet
blocks.

• num_blocks (int) – Number of of UBlocks.

• upsampling_depth (int) – Depth of upsampling.

• mask_act (str) – Name of output activation.

References

[1] [“Sudo rm -rf: Efficient Networks for Universal Audio Source Separation”,] Tzinis et al. MLSP 2020.

class asteroid.masknn.convolutional.SuDORMRFImproved(in_chan, n_src, bn_chan=128,
num_blocks=16, up-
sampling_depth=4,
mask_act=’relu’)

Bases: sphinx.ext.autodoc.importer._MockObject

Improved SuDORMRF mask network, as described in [1].

Parameters

• in_chan (int) – Number of input channels. Also number of output channels.

• n_src (int) – Number of sources in the input mixtures.

10.1. Convolutional blocks 39

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://arxiv.org/abs/1903.03107
https://arxiv.org/abs/1903.03107
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

• bn_chan (int, optional) – Number of bins in the bottleneck layer and the UNet
blocks.

• num_blocks (int) – Number of of UBlocks

• upsampling_depth (int) – Depth of upsampling

• mask_act (str) – Name of output activation.

References

[1] [“Sudo rm -rf: Efficient Networks for Universal Audio Source Separation”,] Tzinis et al. MLSP 2020.

class asteroid.masknn.convolutional.TDConvNet(in_chan, n_src, out_chan=None,
n_blocks=8, n_repeats=3, bn_chan=128,
hid_chan=512, skip_chan=128,
conv_kernel_size=3, norm_type=’gLN’,
mask_act=’relu’, kernel_size=None)

Bases: sphinx.ext.autodoc.importer._MockObject

Temporal Convolutional network used in ConvTasnet.

Parameters

• in_chan (int) – Number of input filters.

• n_src (int) – Number of masks to estimate.

• out_chan (int, optional) – Number of bins in the estimated masks. If None,
out_chan = in_chan.

• n_blocks (int, optional) – Number of convolutional blocks in each repeat. De-
faults to 8.

• n_repeats (int, optional) – Number of repeats. Defaults to 3.

• bn_chan (int, optional) – Number of channels after the bottleneck.

• hid_chan (int, optional) – Number of channels in the convolutional blocks.

• skip_chan (int, optional) – Number of channels in the skip connections. If 0 or
None, TDConvNet won’t have any skip connections and the masks will be computed from
the residual output. Corresponds to the ConvTasnet architecture in v1 or the paper.

• conv_kernel_size (int, optional) – Kernel size in convolutional blocks.

• norm_type (str, optional) – To choose from 'BN', 'gLN', 'cLN'.

• mask_act (str, optional) – Which non-linear function to generate mask.

References

[1] : “Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation” TASLP 2019
Yi Luo, Nima Mesgarani https://arxiv.org/abs/1809.07454

forward(mixture_w)

Parameters mixture_w (torch.Tensor) – Tensor of shape [batch, n_filters, n_frames]

Returns torch.Tensor – estimated mask of shape [batch, n_src, n_filters, n_frames]

40 Chapter 10. DNN building blocks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://arxiv.org/abs/1809.07454
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

class asteroid.masknn.convolutional.TDConvNetpp(in_chan, n_src, out_chan=None,
n_blocks=8, n_repeats=3,
bn_chan=128, hid_chan=512,
skip_chan=128, conv_kernel_size=3,
norm_type=’fgLN’, mask_act=’relu’)

Bases: sphinx.ext.autodoc.importer._MockObject

Improved Temporal Convolutional network used in [1] (TDCN++)

Parameters

• in_chan (int) – Number of input filters.

• n_src (int) – Number of masks to estimate.

• out_chan (int, optional) – Number of bins in the estimated masks. If None,
out_chan = in_chan.

• n_blocks (int, optional) – Number of convolutional blocks in each repeat. De-
faults to 8.

• n_repeats (int, optional) – Number of repeats. Defaults to 3.

• bn_chan (int, optional) – Number of channels after the bottleneck.

• hid_chan (int, optional) – Number of channels in the convolutional blocks.

• skip_chan (int, optional) – Number of channels in the skip connections. If 0 or
None, TDConvNet won’t have any skip connections and the masks will be computed from
the residual output. Corresponds to the ConvTasnet architecture in v1 or the paper.

• kernel_size (int, optional) – Kernel size in convolutional blocks.

• norm_type (str, optional) – To choose from 'BN', 'gLN', 'cLN'.

• mask_act (str, optional) – Which non-linear function to generate mask.

References

[1] : Kavalerov, Ilya et al. “Universal Sound Separation.” in WASPAA 2019

Notes

The differences wrt to ConvTasnet’s TCN are 1. Channel wise layer norm instead of global 2. Longer-range
skip-residual connections from earlier repeat inputs

to later repeat inputs after passing them through dense layer.

3. Learnable scaling parameter after each dense layer. The scaling parameter for the second dense layer
in each convolutional block (which is applied rightbefore the residual connection) is initialized to an
exponentially decaying scalar equal to 0.9**L, where L is the layer or block index.

forward(mixture_w)

Parameters mixture_w (torch.Tensor) – Tensor of shape [batch, n_filters, n_frames]

Returns torch.Tensor – estimated mask of shape [batch, n_src, n_filters, n_frames]

class asteroid.masknn.convolutional.UBlock(out_chan=128, in_chan=512, upsam-
pling_depth=4)

Bases: asteroid.masknn.convolutional._BaseUBlock

10.1. Convolutional blocks 41

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

Upsampling block.

Based on the following principle: REDUCE ---> SPLIT ---> TRANSFORM --> MERGE

forward(x)

Parameters x – input feature map

Returns transformed feature map

class asteroid.masknn.convolutional.UConvBlock(out_chan=128, in_chan=512, upsam-
pling_depth=4)

Bases: asteroid.masknn.convolutional._BaseUBlock

Block which performs successive downsampling and upsampling in order to be able to analyze the input features
in multiple resolutions.

forward(x)

Args x: input feature map

Returns transformed feature map

10.2 Recurrent blocks

class asteroid.masknn.recurrent.DCCRMaskNet(encoders, decoders, n_freqs, **kwargs)
Bases: asteroid.masknn.base.BaseDCUMaskNet

Masking part of DCCRNet, as proposed in [1].

Valid architecture values for the default_architecture classmethod are: “DCCRN”.

Parameters

• encoders (list of length N of tuples of (in_chan, out_chan, kernel_size, stride, padding))
– Arguments of encoders of the u-net

• decoders (list of length N of tuples of (in_chan, out_chan, kernel_size, stride, padding))
– Arguments of decoders of the u-net

• n_freqs (int) – Number of frequencies (dim 1) of input to ‘‘.forward()‘. n_freqs - 1 must
be divisible by f_0 * f_1 * . . . * f_N where f_k are the frequency strides of the encoders.

References

[1] : “DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement”, Yanxin
Hu et al. https://arxiv.org/abs/2008.00264

class asteroid.masknn.recurrent.DCCRMaskNetRNN(in_size, hid_size=128,
rnn_type=’LSTM’, norm_type=None)

Bases: sphinx.ext.autodoc.importer._MockObject

RNN (LSTM) layer between encoders and decoders introduced in [1].

Parameters

• in_size (int) – Number of inputs to the RNN. Must be the product of non-batch, non-
time dimensions of output shape of last encoder, i.e. if the last encoder output shape is
[batch, n_chans, n_freqs, time], in_size must be n_chans * n_freqs.

• hid_size (int, optional) – Number of units in RNN.

42 Chapter 10. DNN building blocks

https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/2008.00264
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

• rnn_type (str, optional) – Type of RNN to use. See SingleRNN for valid values.

• norm_type (Optional[str], optional) – Norm to use after linear. See
asteroid.masknn.norms for valid values. (Not used in [1]).

References

[1] : “DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement”, Yanxin
Hu et al. https://arxiv.org/abs/2008.00264

forward(x: <sphinx.ext.autodoc.importer._MockObject object at 0x7f827d13e050>)
Input shape: [batch, . . . , time]

class asteroid.masknn.recurrent.DPRNN(in_chan, n_src, out_chan=None, bn_chan=128,
hid_size=128, chunk_size=100, hop_size=None,
n_repeats=6, norm_type=’gLN’, mask_act=’relu’,
bidirectional=True, rnn_type=’LSTM’,
num_layers=1, dropout=0)

Bases: sphinx.ext.autodoc.importer._MockObject

Dual-path RNN Network for Single-Channel Source Separation introduced in [1].

Parameters

• in_chan (int) – Number of input filters.

• n_src (int) – Number of masks to estimate.

• out_chan (int or None) – Number of bins in the estimated masks. Defaults to
in_chan.

• bn_chan (int) – Number of channels after the bottleneck. Defaults to 128.

• hid_size (int) – Number of neurons in the RNNs cell state. Defaults to 128.

• chunk_size (int) – window size of overlap and add processing. Defaults to 100.

• hop_size (int or None) – hop size (stride) of overlap and add processing. Default to
chunk_size // 2 (50% overlap).

• n_repeats (int) – Number of repeats. Defaults to 6.

• norm_type (str, optional) – Type of normalization to use. To choose from

– 'gLN': global Layernorm

– 'cLN': channelwise Layernorm

• mask_act (str, optional) – Which non-linear function to generate mask.

• bidirectional (bool, optional) – True for bidirectional Inter-Chunk RNN (Intra-
Chunk is always bidirectional).

• rnn_type (str, optional) – Type of RNN used. Choose between 'RNN', 'LSTM'
and 'GRU'.

• num_layers (int, optional) – Number of layers in each RNN.

• dropout (float, optional) – Dropout ratio, must be in [0,1].

10.2. Recurrent blocks 43

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://arxiv.org/abs/2008.00264
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

asteroid Documentation, Release 0.4.0alpha

References

[1] “Dual-path RNN: efficient long sequence modeling for time-domain single-channel speech separation”,
Yi Luo, Zhuo Chen and Takuya Yoshioka. https://arxiv.org/abs/1910.06379

forward(mixture_w)

Parameters mixture_w (torch.Tensor) – Tensor of shape [batch, n_filters, n_frames]

Returns

torch.Tensor estimated mask of shape [batch, n_src, n_filters, n_frames]

class asteroid.masknn.recurrent.DPRNNBlock(in_chan, hid_size, norm_type=’gLN’,
bidirectional=True, rnn_type=’LSTM’,
num_layers=1, dropout=0)

Bases: sphinx.ext.autodoc.importer._MockObject

Dual-Path RNN Block as proposed in [1].

Parameters

• in_chan (int) – Number of input channels.

• hid_size (int) – Number of hidden neurons in the RNNs.

• norm_type (str, optional) – Type of normalization to use. To choose from -
'gLN': global Layernorm - 'cLN': channelwise Layernorm

• bidirectional (bool, optional) – True for bidirectional Inter-Chunk RNN.

• rnn_type (str, optional) – Type of RNN used. Choose from 'RNN', 'LSTM' and
'GRU'.

• num_layers (int, optional) – Number of layers used in each RNN.

• dropout (float, optional) – Dropout ratio. Must be in [0, 1].

References

[1] “Dual-path RNN: efficient long sequence modeling for time-domain single-channel speech separation”, Yi
Luo, Zhuo Chen and Takuya Yoshioka. https://arxiv.org/abs/1910.06379

forward(x)
Input shape : [batch, feats, chunk_size, num_chunks]

class asteroid.masknn.recurrent.LSTMMasker(in_chan, n_src, out_chan=None,
rnn_type=’lstm’, n_layers=4, hid_size=512,
dropout=0.3, mask_act=’sigmoid’, bidirec-
tional=True)

Bases: sphinx.ext.autodoc.importer._MockObject

LSTM mask network introduced in [1], without skip connections.

Parameters

• in_chan (int) – Number of input filters.

• n_src (int) – Number of masks to estimate.

• out_chan (int or None) – Number of bins in the estimated masks. Defaults to
in_chan.

44 Chapter 10. DNN building blocks

https://arxiv.org/abs/1910.06379
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1910.06379
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

asteroid Documentation, Release 0.4.0alpha

• rnn_type (str, optional) – Type of RNN used. Choose between 'RNN', 'LSTM'
and 'GRU'.

• n_layers (int, optional) – Number of layers in each RNN.

• hid_size (int) – Number of neurons in the RNNs cell state.

• mask_act (str, optional) – Which non-linear function to generate mask.

• bidirectional (bool, optional) – Whether to use BiLSTM

• dropout (float, optional) – Dropout ratio, must be in [0,1].

References

[1]: Yi Luo et al. “Real-time Single-channel Dereverberation and Separation with Time-domain Audio
Separation Network”, Interspeech 2018

class asteroid.masknn.recurrent.SingleRNN(rnn_type, input_size, hidden_size, n_layers=1,
dropout=0, bidirectional=False)

Bases: sphinx.ext.autodoc.importer._MockObject

Module for a RNN block.

Inspired from https://github.com/yluo42/TAC/blob/master/utility/models.py Licensed under CC BY-NC-SA 3.0
US.

Parameters

• rnn_type (str) – Select from 'RNN', 'LSTM', 'GRU'. Can also be passed in lower-
case letters.

• input_size (int) – Dimension of the input feature. The input should have shape [batch,
seq_len, input_size].

• hidden_size (int) – Dimension of the hidden state.

• n_layers (int, optional) – Number of layers used in RNN. Default is 1.

• dropout (float, optional) – Dropout ratio. Default is 0.

• bidirectional (bool, optional) – Whether the RNN layers are bidirectional. De-
fault is False.

forward(inp)
Input shape [batch, seq, feats]

class asteroid.masknn.recurrent.StackedResidualBiRNN(rnn_type, n_units, n_layers=4,
dropout=0.0, bidirec-
tional=True)

Bases: sphinx.ext.autodoc.importer._MockObject

Stacked Bidirectional RNN with builtin residual connection. Residual connections are applied on both RNN
directions. Only supports bidiriectional RNNs. See StackedResidualRNN for unidirectional ones.

Parameters

• rnn_type (str) – Select from 'RNN', 'LSTM', 'GRU'. Can also be passed in lower-
case letters.

• n_units (int) – Number of units in recurrent layers. This will also be the expected input
size.

• n_layers (int) – Number of recurrent layers.

10.2. Recurrent blocks 45

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://github.com/yluo42/TAC/blob/master/utility/models.py
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

• dropout (float) – Dropout value, between 0. and 1. (Default: 0.)

• bidirectional (bool) – If True, use bidirectional RNN, else unidirectional. (Default:
False)

forward(x)
Builtin residual connections + dropout applied before residual. Input shape : [batch, time_axis, feat_axis]

class asteroid.masknn.recurrent.StackedResidualRNN(rnn_type, n_units, n_layers=4,
dropout=0.0, bidirec-
tional=False)

Bases: sphinx.ext.autodoc.importer._MockObject

Stacked RNN with builtin residual connection. Only supports forward RNNs. See StackedResidualBiRNN for
bidirectional ones.

Parameters

• rnn_type (str) – Select from 'RNN', 'LSTM', 'GRU'. Can also be passed in lower-
case letters.

• n_units (int) – Number of units in recurrent layers. This will also be the expected input
size.

• n_layers (int) – Number of recurrent layers.

• dropout (float) – Dropout value, between 0. and 1. (Default: 0.)

• bidirectional (bool) – If True, use bidirectional RNN, else unidirectional. (Default:
False)

forward(x)
Builtin residual connections + dropout applied before residual. Input shape : [batch, time_axis, feat_axis]

10.3 Norms

class asteroid.masknn.norms.BatchNorm(*args, **kwargs)
Bases: sphinx.ext.autodoc.importer._MockObject

Wrapper class for pytorch BatchNorm1D and BatchNorm2D

class asteroid.masknn.norms.ChanLN(channel_size)
Bases: asteroid.masknn.norms._LayerNorm

Channel-wise Layer Normalization (chanLN).

forward(x)
Applies forward pass.

Works for any input size > 2D.

Parameters x (torch.Tensor) – [batch, chan, *]

Returns torch.Tensor – chanLN_x [batch, chan, *]

class asteroid.masknn.norms.CumLN(channel_size)
Bases: asteroid.masknn.norms._LayerNorm

Cumulative Global layer normalization(cumLN).

forward(x)

Parameters x (torch.Tensor) – Shape [batch, channels, length]

46 Chapter 10. DNN building blocks

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

Returns torch.Tensor – cumLN_x [batch, channels, length]

class asteroid.masknn.norms.FeatsGlobLN(channel_size)
Bases: asteroid.masknn.norms._LayerNorm

feature-wise global Layer Normalization (FeatsGlobLN). Applies normalization over frames for each channel.

forward(x)
Applies forward pass.

Works for any input size > 2D.

Parameters x (torch.Tensor) – [batch, chan, time]

Returns torch.Tensor – chanLN_x [batch, chan, time]

class asteroid.masknn.norms.GlobLN(channel_size)
Bases: asteroid.masknn.norms._LayerNorm

Global Layer Normalization (globLN).

forward(x)
Applies forward pass.

Works for any input size > 2D.

Parameters x (torch.Tensor) – Shape [batch, chan, *]

Returns torch.Tensor – gLN_x [batch, chan, *]

asteroid.masknn.norms.bN
alias of asteroid.masknn.norms.BatchNorm

asteroid.masknn.norms.cLN
alias of asteroid.masknn.norms.ChanLN

asteroid.masknn.norms.cgLN
alias of asteroid.masknn.norms.CumLN

asteroid.masknn.norms.fgLN
alias of asteroid.masknn.norms.FeatsGlobLN

asteroid.masknn.norms.gLN
alias of asteroid.masknn.norms.GlobLN

asteroid.masknn.norms.get(identifier)
Returns a norm class from a string. Returns its input if it is callable (already a _LayerNorm for example).

Parameters identifier (str or Callable or None) – the norm identifier.

Returns _LayerNorm or None

asteroid.masknn.norms.get_complex(identifier)
Like .get but returns a complex norm created with asteroid.complex_nn.OnReIm.

asteroid.masknn.norms.register_norm(custom_norm)
Register a custom norm, gettable with norms.get.

Parameters custom_norm – Custom norm to register.

10.3. Norms 47

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

asteroid Documentation, Release 0.4.0alpha

48 Chapter 10. DNN building blocks

CHAPTER 11

Models

11.1 Base classes

class asteroid.models.base_models.BaseEncoderMaskerDecoder(encoder, masker,
decoder, en-
coder_activation=None)

Bases: asteroid.models.base_models.BaseModel

Base class for encoder-masker-decoder separation models.

Parameters

• encoder (Encoder) – Encoder instance.

• masker (nn.Module) – masker network.

• decoder (Decoder) – Decoder instance.

• encoder_activation (Optional[str], optional) – Activation to apply after
encoder. See asteroid.masknn.activations for valid values.

forward(wav)
Enc/Mask/Dec model forward

Parameters wav (torch.Tensor) – waveform tensor. 1D, 2D or 3D tensor, time last.

Returns torch.Tensor, of shape (batch, n_src, time) or (n_src, time).

get_model_args()
Arguments needed to re-instantiate the model.

postprocess_decoded(decoded)
Hook to perform transformations on the decoded, time domain representation (output of the decoder)
before original shape reconstruction.

Parameters decoded (Tensor of shape (batch, n_src, time)) – Output of the
decoder, before original shape reconstruction.

Returns Transformed decoded

49

https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

postprocess_encoded(tf_rep)
Hook to perform transformations on the encoded, time-frequency domain representation (output of the
encoder) before encoder activation is applied.

Parameters tf_rep (Tensor of shape (batch, freq, time)) – Output of the en-
coder, before encoder activation is applied.

Returns Transformed tf_rep

postprocess_masked(masked_tf_rep)
Hook to perform transformations on the masked time-frequency domain representation (result of masking
in the time-frequency domain) before decoding.

Parameters masked_tf_rep (Tensor of shape (batch, n_src, freq,
time)) – Masked time-frequency representation, before decoding.

Returns Transformed masked_tf_rep

postprocess_masks(masks)
Hook to perform transformations on the masks (output of the masker) before masks are applied.

Parameters masks (Tensor of shape (batch, n_src, freq, time)) – Output
of the masker

Returns Transformed masks

class asteroid.models.base_models.BaseModel
Bases: sphinx.ext.autodoc.importer._MockObject

file_separate(filename: str, output_dir=None, force_overwrite=False, **kwargs)→ None
Filename interface to separate.

classmethod from_pretrained(pretrained_model_conf_or_path, *args, **kwargs)
Instantiate separation model from a model config (file or dict).

Parameters

• pretrained_model_conf_or_path (Union[dict, str]) – model conf as re-
turned by serialize, or path to it. Need to contain model_args and state_dict keys.

• *args – Positional arguments to be passed to the model.

• **kwargs – Keyword arguments to be passed to the model. They overwrite the ones in
the model package.

Returns nn.Module corresponding to the pretrained model conf/URL.

Raises ValueError if the input config file doesn’t contain the keys – model_name, model_args or
state_dict.

get_state_dict()
In case the state dict needs to be modified before sharing the model.

numpy_separate(wav: <sphinx.ext.autodoc.importer._MockObject object at 0x7f827d216bd0>,
**kwargs) → <sphinx.ext.autodoc.importer._MockObject object at
0x7f827d81cad0>

Numpy interface to separate.

separate(wav, output_dir=None, force_overwrite=False, **kwargs)
Infer separated sources from input waveforms. Also supports filenames.

Parameters

• wav (Union[torch.Tensor, numpy.ndarray, str]) – waveform ar-
ray/tensor. Shape: 1D, 2D or 3D tensor, time last.

50 Chapter 11. Models

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

asteroid Documentation, Release 0.4.0alpha

• output_dir (str) – path to save all the wav files. If None, estimated sources will be
saved next to the original ones.

• force_overwrite (bool) – whether to overwrite existing files.

• **kwargs – keyword arguments to be passed to _separate.

Returns

Union[torch.Tensor, numpy.ndarray, None], the estimated sources. (batch, n_src, time)
or (n_src, time) w/o batch dim.

Note: By default, separate calls _separate which calls forward. For models whose forward doesn’t return
waveform tensors, overwrite _separate to return waveform tensors.

serialize()
Serialize model and output dictionary.

Returns dict, serialized model with keys model_args and state_dict.

torch_separate(wav: <sphinx.ext.autodoc.importer._MockObject object at 0x7f827d750b90>,
**kwargs) → <sphinx.ext.autodoc.importer._MockObject object at
0x7f827d750c90>

Core logic of separate.

asteroid.models.base_models.BaseTasNet
alias of asteroid.models.base_models.BaseEncoderMaskerDecoder

11.2 Ready-to-use models

class asteroid.models.conv_tasnet.ConvTasNet(n_src, out_chan=None, n_blocks=8,
n_repeats=3, bn_chan=128,
hid_chan=512, skip_chan=128,
conv_kernel_size=3, norm_type=’gLN’,
mask_act=’sigmoid’, in_chan=None,
fb_name=’free’, kernel_size=16,
n_filters=512, stride=8, en-
coder_activation=None, **fb_kwargs)

Bases: asteroid.models.base_models.BaseEncoderMaskerDecoder

ConvTasNet separation model, as described in [1].

Parameters

• n_src (int) – Number of sources in the input mixtures.

• out_chan (int, optional) – Number of bins in the estimated masks. If None,
out_chan = in_chan.

• n_blocks (int, optional) – Number of convolutional blocks in each repeat. De-
faults to 8.

• n_repeats (int, optional) – Number of repeats. Defaults to 3.

• bn_chan (int, optional) – Number of channels after the bottleneck.

• hid_chan (int, optional) – Number of channels in the convolutional blocks.

11.2. Ready-to-use models 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

• skip_chan (int, optional) – Number of channels in the skip connections. If 0 or
None, TDConvNet won’t have any skip connections and the masks will be computed from
the residual output. Corresponds to the ConvTasnet architecture in v1 or the paper.

• conv_kernel_size (int, optional) – Kernel size in convolutional blocks.

• norm_type (str, optional) – To choose from 'BN', 'gLN', 'cLN'.

• mask_act (str, optional) – Which non-linear function to generate mask.

• in_chan (int, optional) – Number of input channels, should be equal to n_filters.

• fb_name (str, className) – Filterbank family from which to make encoder and de-
coder. To choose among ['free', 'analytic_free', 'param_sinc', 'stft'].

• n_filters (int) – Number of filters / Input dimension of the masker net.

• kernel_size (int) – Length of the filters.

• stride (int, optional) – Stride of the convolution. If None (default), set to
kernel_size // 2.

• **fb_kwargs (dict) – Additional kwards to pass to the filterbank creation.

References

[1] : “Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation” TASLP 2019
Yi Luo, Nima Mesgarani https://arxiv.org/abs/1809.07454

class asteroid.models.dprnn_tasnet.DPRNNTasNet(n_src, out_chan=None,
bn_chan=128, hid_size=128,
chunk_size=100, hop_size=None,
n_repeats=6, norm_type=’gLN’,
mask_act=’sigmoid’, bidirec-
tional=True, rnn_type=’LSTM’,
num_layers=1, dropout=0,
in_chan=None, fb_name=’free’, ker-
nel_size=16, n_filters=64, stride=8, en-
coder_activation=None, **fb_kwargs)

Bases: asteroid.models.base_models.BaseEncoderMaskerDecoder

DPRNN separation model, as described in [1].

Parameters

• n_src (int) – Number of masks to estimate.

• out_chan (int or None) – Number of bins in the estimated masks. Defaults to
in_chan.

• bn_chan (int) – Number of channels after the bottleneck. Defaults to 128.

• hid_size (int) – Number of neurons in the RNNs cell state. Defaults to 128.

• chunk_size (int) – window size of overlap and add processing. Defaults to 100.

• hop_size (int or None) – hop size (stride) of overlap and add processing. Default to
chunk_size // 2 (50% overlap).

• n_repeats (int) – Number of repeats. Defaults to 6.

• norm_type (str, optional) – Type of normalization to use. To choose from

– 'gLN': global Layernorm

52 Chapter 11. Models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://arxiv.org/abs/1809.07454
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

asteroid Documentation, Release 0.4.0alpha

– 'cLN': channelwise Layernorm

• mask_act (str, optional) – Which non-linear function to generate mask.

• bidirectional (bool, optional) – True for bidirectional Inter-Chunk RNN (Intra-
Chunk is always bidirectional).

• rnn_type (str, optional) – Type of RNN used. Choose between 'RNN', 'LSTM'
and 'GRU'.

• num_layers (int, optional) – Number of layers in each RNN.

• dropout (float, optional) – Dropout ratio, must be in [0,1].

• in_chan (int, optional) – Number of input channels, should be equal to n_filters.

• fb_name (str, className) – Filterbank family from which to make encoder and de-
coder. To choose among ['free', 'analytic_free', 'param_sinc', 'stft'].

• n_filters (int) – Number of filters / Input dimension of the masker net.

• kernel_size (int) – Length of the filters.

• stride (int, optional) – Stride of the convolution. If None (default), set to
kernel_size // 2.

• **fb_kwargs (dict) – Additional kwards to pass to the filterbank creation.

References

[1] “Dual-path RNN: efficient long sequence modeling for time-domain single-channel speech separation”,
Yi Luo, Zhuo Chen and Takuya Yoshioka. https://arxiv.org/abs/1910.06379

11.3 Publishing models

class asteroid.models.zenodo.Zenodo(api_key=None, use_sandbox=True)
Bases: object

Faciliate Zenodo’s REST API.

Parameters

• api_key (str) – Access token generated to upload depositions.

• use_sandbox (bool) – Whether to use the sandbox (default: True) Note that api_key are
different in sandbox.

Methods (all methods return the requests response): create_new_deposition
change_metadata_in_deposition, upload_new_file_to_deposition publish_deposition get_deposition
remove_deposition remove_all_depositions

Note: A Zenodo record is something that is public and cannot be deleted. A Zenodo deposit has not yet been
published, is private and can be deleted.

change_metadata_in_deposition(dep_id, metadata)
Set or replace metadata in given deposition

Parameters

11.3. Publishing models 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://arxiv.org/abs/1910.06379
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

asteroid Documentation, Release 0.4.0alpha

• dep_id (int) – deposition id. You cna get it with r = create_new_deposition(); dep_id
= r.json()[‘id’]

• metadata (dict) – Metadata dict.

Examples

metadata = { ‘title’: ‘My first upload’, ‘upload_type’: ‘poster’, ‘description’: ‘This is my first upload’,
‘creators’: [{‘name’: ‘Doe, John’,

‘affiliation’: ‘Zenodo’}]

}

create_new_deposition(metadata=None)
Creates a new deposition.

Parameters metadata (dict, optional) – Metadata dict to upload on the new deposi-
tion.

get_deposition(dep_id=-1)
Get deposition by deposition id. Get all dep_id is -1 (default).

publish_deposition(dep_id)
Publish given deposition (Cannot be deleted)!

Parameters dep_id (int) – deposition id. You cna get it with r = create_new_deposition();
dep_id = r.json()[‘id’]

remove_all_depositions()
Removes all unpublished deposition (not records).

remove_deposition(dep_id)
Remove deposition with deposition id dep_id

upload_new_file_to_deposition(dep_id, file, name=None)
Upload one file to existing deposition. :param dep_id: deposition id. You cna get it with

r = create_new_deposition(); dep_id = r.json()[‘id’]

Parameters

• file (str or io.BufferedReader) – path to a file, or already opened file (path
prefered).

• name (str, optional) – name given to the uploaded file. Defaults to the path.

(More: https://developers.zenodo.org/#deposition-files)

asteroid.models.publisher.display_one_level_dict(dic)
Single level dict to HTML :param dic: :type dic: dict

Returns str for HTML-encoded single level dic

asteroid.models.publisher.get_username()
Get git of FS username for upload.

asteroid.models.publisher.make_license_notice(model_name, licenses, uploader=None)
Make license notice based on license dicts.

Parameters

• model_name (str) – Name of the model.

54 Chapter 11. Models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#io.BufferedReader
https://docs.python.org/3/library/stdtypes.html#str
https://developers.zenodo.org/#deposition-files
https://docs.python.org/3/library/stdtypes.html#str

asteroid Documentation, Release 0.4.0alpha

• licenses (List[dict]) – List of dict with keys (title, title_link, author, author_link,

licence, licence_link).

• uploader (str) – Name of the uploader such as “Manuel Pariente”.

Returns

str, the license note describing the model, it’s attribution, the original licenses, what we li-
cense it under and the licensor.

asteroid.models.publisher.make_metadata_from_model(model)
Create Zenodo deposit metadata for a given publishable model. :param model: Dictionary with all infos needed
to publish.

More info to come.

Returns dict, the metadata to create the Zenodo deposit with.

asteroid.models.publisher.save_publishable(publish_dir, model_dict, metrics=None,
train_conf=None, recipe=None)

Save models to prepare for publication / model sharing.

Parameters

• publish_dir (str) – Path to the publishing directory. Usually under
exp/exp_name/publish_dir

• model_dict (dict) – dict at least with keys model_args, state_dict,‘dataset‘ or licenses

• metrics (dict) – dict with evaluation metrics.

• train_conf (dict) – Training configuration dict (from conf.yml).

• recipe (str) – Name of the recipe.

Returns dict, same as model_dict with added fields.

Raises AssertionError when either ‘model_args‘, ‘state_dict‘,‘dataset‘ or – licenses are not present
is model_dict.keys()

asteroid.models.publisher.two_level_dict_html(dic)
Two-level dict to HTML. :param dic: two-level dict :type dic: dict

Returns str for HTML-encoded two level dic

asteroid.models.publisher.upload_publishable(publish_dir, uploader=None, affili-
ation=None, git_username=None,
token=None, force_publish=False,
use_sandbox=False, unit_test=False)

Entry point to upload publishable model.

Parameters

• publish_dir (str) – Path to the publishing directory. Usually under
exp/exp_name/publish_dir

• uploader (str) – Full name of the uploader (Ex: Manuel Pariente)

• affiliation (str, optional) – Affiliation (no accent).

• git_username (str, optional) – GitHub username.

• token (str) – Access token generated to upload depositions.

11.3. Publishing models 55

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

asteroid Documentation, Release 0.4.0alpha

• force_publish (bool) – Whether to directly publish without asking confirmation be-
fore. Defaults to False.

• use_sandbox (bool) – Whether to use Zenodo’s sandbox instead of the official Zenodo.

• unit_test (bool) – If True, we do not ask user input and do not publish.

asteroid.models.publisher.zenodo_upload(model, token, model_path=None,
use_sandbox=False)

Create deposit and upload metadata + model

Parameters

• model (dict) –

• token (str) – Access token.

• model_path (str) – Saved model path.

• use_sandbox (bool) – Whether to use Zenodo’s sandbox instead of the official Zenodo.

Returns Zenodo (Zenodo instance with access token) int (deposit ID)

56 Chapter 11. Models

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

CHAPTER 12

Losses & Metrics

class asteroid.losses.PITLossWrapper(loss_func, pit_from=’pw_mtx’, perm_reduce=None)
Bases: sphinx.ext.autodoc.importer._MockObject

Permutation invariant loss wrapper.

Parameters

• loss_func – function with signature (targets, est_targets, **kwargs).

• pit_from (str) – Determines how PIT is applied.

– 'pw_mtx' (pairwise matrix): loss_func computes pairwise losses and returns a
torch.Tensor of shape (𝑏𝑎𝑡𝑐ℎ, 𝑛_𝑠𝑟𝑐, 𝑛_𝑠𝑟𝑐). Each element [𝑏𝑎𝑡𝑐ℎ, 𝑖, 𝑗] corresponds to
the loss between 𝑡𝑎𝑟𝑔𝑒𝑡𝑠[:, 𝑖] and 𝑒𝑠𝑡_𝑡𝑎𝑟𝑔𝑒𝑡𝑠[:, 𝑗]

– 'pw_pt' (pairwise point): loss_func computes the loss for a batch of single source
and single estimates (tensors won’t have the source axis). Output shape : (𝑏𝑎𝑡𝑐ℎ). See
get_pw_losses().

– ‘‘’perm_avg’‘‘(permutation average): loss_func computes the average loss for a
given permutations of the sources and estimates. Output shape : (𝑏𝑎𝑡𝑐ℎ). See
best_perm_from_perm_avg_loss().

In terms of efficiency, 'perm_avg' is the least efficicient.

• perm_reduce (Callable) – torch function to reduce permutation losses. Defaults to
None (equivalent to mean). Signature of the func (pwl_set, **kwargs) : (B, n_src!, n_src)
–> (B, n_src!). perm_reduce can receive **kwargs during forward using the reduce_kwargs
argument (dict). If those argument are static, consider defining a small function or using
functools.partial. Only used in ‘pw_mtx’ and ‘pw_pt’ pit_from modes.

For each of these modes, the best permutation and reordering will be automatically computed.

57

https://docs.python.org/3/library/stdtypes.html#str

asteroid Documentation, Release 0.4.0alpha

Examples

>>> import torch
>>> from asteroid.losses import pairwise_neg_sisdr
>>> sources = torch.randn(10, 3, 16000)
>>> est_sources = torch.randn(10, 3, 16000)
>>> # Compute PIT loss based on pairwise losses
>>> loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from='pw_mtx')
>>> loss_val = loss_func(est_sources, sources)
>>>
>>> # Using reduce
>>> def reduce(perm_loss, src):
>>> weighted = perm_loss * src.norm(dim=-1, keepdim=True)
>>> return torch.mean(weighted, dim=-1)
>>>
>>> loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from='pw_mtx',
>>> perm_reduce=reduce)
>>> reduce_kwargs = {'src': sources}
>>> loss_val = loss_func(est_sources, sources,
>>> reduce_kwargs=reduce_kwargs)

static best_perm_from_perm_avg_loss(loss_func, est_targets, targets, **kwargs)
Find best permutation from loss function with source axis.

Parameters

• loss_func – function with signature (targets, est_targets, **kwargs) The loss function
batch losses from.

• est_targets – torch.Tensor. Expected shape [batch, nsrc, *]. The batch of target
estimates.

• targets – torch.Tensor. Expected shape [batch, nsrc, *]. The batch of training targets.

• **kwargs – additional keyword argument that will be passed to the loss function.

Returns

tuple – torch.Tensor: The loss corresponding to the best permutation of size (batch,).

torch.LongTensor: The indexes of the best permutations.

static find_best_perm(pair_wise_losses, n_src, perm_reduce=None, **kwargs)
Find the best permutation, given the pair-wise losses.

Parameters

• pair_wise_losses (torch.Tensor) – Tensor of shape [batch, n_src, n_src]. Pair-
wise losses.

• n_src (int) – Number of sources.

• perm_reduce (Callable) – torch function to reduce permutation losses. Defaults to
None (equivalent to mean). Signature of the func (pwl_set, **kwargs) : (B, n_src!, n_src)
–> (B, n_src!)

• **kwargs – additional keyword argument that will be passed to the permutation reduce
function.

Returns

tuple – torch.Tensor: The loss corresponding to the best permutation of size (batch,).

torch.LongTensor: The indexes of the best permutations.

58 Chapter 12. Losses & Metrics

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

MIT Copyright (c) 2018 Kaituo XU. See Original code and License.

forward(est_targets, targets, return_est=False, reduce_kwargs=None, **kwargs)
Find the best permutation and return the loss.

Parameters

• est_targets – torch.Tensor. Expected shape [batch, nsrc, *]. The batch of target
estimates.

• targets – torch.Tensor. Expected shape [batch, nsrc, *]. The batch of training targets

• return_est – Boolean. Whether to return the reordered targets estimates (To compute
metrics or to save example).

• reduce_kwargs (dict or None) – kwargs that will be passed to the pairwise losses
reduce function (perm_reduce).

• **kwargs – additional keyword argument that will be passed to the loss function.

Returns

• Best permutation loss for each batch sample, average over the batch.
torch.Tensor(loss_value)

• The reordered targets estimates if return_est is True. torch.Tensor of shape [batch,
nsrc, *].

static get_pw_losses(loss_func, est_targets, targets, **kwargs)
Get pair-wise losses between the training targets and its estimate for a given loss function.

Parameters

• loss_func – function with signature (targets, est_targets, **kwargs) The loss function
to get pair-wise losses from.

• est_targets – torch.Tensor. Expected shape [batch, nsrc, *]. The batch of target
estimates.

• targets – torch.Tensor. Expected shape [batch, nsrc, *]. The batch of training targets.

• **kwargs – additional keyword argument that will be passed to the loss function.

Returns torch.Tensor or size [batch, nsrc, nsrc], losses computed for all permutations of the
targets and est_targets.

This function can be called on a loss function which returns a tensor of size [batch]. There are more
efficient ways to compute pair-wise losses using broadcasting.

static reorder_source(source, n_src, min_loss_idx)
Reorder sources according to the best permutation.

Parameters

• source (torch.Tensor) – Tensor of shape [batch, n_src, time]

• n_src (int) – Number of sources.

• min_loss_idx (torch.LongTensor) – Tensor of shape [batch], each item is in [0,
n_src!).

Returns torch.Tensor – Reordered sources of shape [batch, n_src, time].

MIT Copyright (c) 2018 Kaituo XU. See Original code and License.

59

https://github.com/kaituoxu/Conv-TasNet/blob/master
https://github.com/kaituoxu/Conv-TasNet/blob/master/LICENSE
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://github.com/kaituoxu/Conv-TasNet/blob/master
https://github.com/kaituoxu/Conv-TasNet/blob/master/LICENSE

asteroid Documentation, Release 0.4.0alpha

class asteroid.losses.SingleSrcPMSQE(window_name=’sqrt_hann’, window_weight=1.0,
bark_eq=True, gain_eq=True, sample_rate=16000)

Bases: sphinx.ext.autodoc.importer._MockObject

Computes the Perceptual Metric for Speech Quality Evaluation (PMSQE) as described in [1]. This version is
only designed for 16 kHz (512 length DFT). Adaptation to 8 kHz could be done by changing the parameters
of the class (see Tensorflow implementation). The SLL, frequency and gain equalization are applied in each
sequence independently.

Parameters

• window_name (str) – Select the used window function for the correct factor to be ap-
plied. Defaults to sqrt hanning window. Among [‘rect’, ‘hann’, ‘sqrt_hann’, ‘hamming’,
‘flatTop’].

• window_weight (float, optional) – Correction to the window factor applied.

• bark_eq (bool, optional) – Whether to apply bark equalization.

• gain_eq (bool, optional) – Whether to apply gain equalization.

• sample_rate (int) – Sample rate of the input audio.

References

[1] J.M.Martin, A.M.Gomez, J.A.Gonzalez, A.M.Peinado ‘A Deep Learning Loss Function based on the Per-
ceptual Evaluation of the Speech Quality’, IEEE Signal Processing Letters, 2018. Implemented by Juan M.
Martin. Contact: mdjuamart@ugr.es Copyright 2019: University of Granada, Signal Processing, Multimedia
Transmission and Speech/Audio Technologies (SigMAT) Group.

Note: Inspired on the Perceptual Evaluation of the Speech Quality (PESQ) algorithm, this function consists of
two regularization factors : the symmetrical and asymmetrical distortion in the loudness domain.

Examples

>>> import torch
>>> from asteroid.filterbanks import STFTFB, Encoder, transforms
>>> from asteroid.losses import PITLossWrapper, SingleSrcPMSQE
>>> stft = Encoder(STFTFB(kernel_size=512, n_filters=512, stride=256))
>>> # Usage by itself
>>> ref, est = torch.randn(2, 1, 16000), torch.randn(2, 1, 16000)
>>> ref_spec = transforms.take_mag(stft(ref))
>>> est_spec = transforms.take_mag(stft(est))
>>> loss_func = SingleSrcPMSQE()
>>> loss_value = loss_func(est_spec, ref_spec)
>>> # Usage with PITLossWrapper
>>> loss_func = PITLossWrapper(SingleSrcPMSQE(), pit_from='pw_pt')
>>> ref, est = torch.randn(2, 3, 16000), torch.randn(2, 3, 16000)
>>> ref_spec = transforms.take_mag(stft(ref))
>>> est_spec = transforms.take_mag(stft(est))
>>> loss_value = loss_func(ref_spec, est_spec)

bark_freq_equalization(ref_bark_spectra, deg_bark_spectra)
This version is applied in the degraded directly.

forward(est_targets, targets, pad_mask=None)

60 Chapter 12. Losses & Metrics

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
mailto:mdjuamart@ugr.es

asteroid Documentation, Release 0.4.0alpha

Args

est_targets (torch.Tensor): Dimensions (B, T, F). Padded degraded power spectrum in time-
frequency domain.

targets (torch.Tensor): Dimensions (B, T, F). Zero-Padded reference power spectrum in time-
frequency domain.

pad_mask (torch.Tensor, optional): Dimensions (B, T, 1). Mask to indicate the padding frames.
Defaults to all ones.

Dimensions B: Number of sequences in the batch. T: Number of time frames. F: Number of frequency
bins.

Returns torch.tensor of shape (B,), wD + 0.309 * wDA

Notes Dimensions (B, F, T) are also supported by SingleSrcPMSQE but are less efficient because input
tensors are transposed (not inplace).

Examples

static get_correction_factor(window_name)
Returns the power correction factor depending on the window.

asteroid.losses.SingleSrcNegSTOI
alias of asteroid.losses.stoi.NegSTOILoss

class asteroid.losses.SingleSrcMultiScaleSpectral(n_filters=None, win-
dows_size=None, hops_size=None,
alpha=1.0)

Bases: sphinx.ext.autodoc.importer._MockObject

Measure multi-scale spectral loss as described in [1]

Parameters

• n_filters (list) – list containing the number of filter desired for each STFT

• windows_size (list) – list containing the size of the window desired for each STFT

• hops_size (list) – list containing the size of the hop desired for each STFT

Shape:

est_targets (torch.Tensor): Expected shape [batch, time]. Batch of target estimates.

targets (torch.Tensor): Expected shape [batch, time]. Batch of training targets.

alpha (float) : Weighting factor for the log term

Returns torch.Tensor – with shape [batch]

Examples

>>> import torch
>>> targets = torch.randn(10, 32000)
>>> est_targets = torch.randn(10, 32000)
>>> # Using it by itself on a pair of source/estimate
>>> loss_func = SingleSrcMultiScaleSpectral()
>>> loss = loss_func(est_targets, targets)

61

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

>>> import torch
>>> from asteroid.losses import PITLossWrapper
>>> targets = torch.randn(10, 2, 32000)
>>> est_targets = torch.randn(10, 2, 32000)
>>> # Using it with PITLossWrapper with sets of source/estimates
>>> loss_func = PITLossWrapper(SingleSrcMultiScaleSpectral(),
>>> pit_from='pw_pt')
>>> loss = loss_func(est_targets, targets)

References

[1] Jesse Engel and Lamtharn (Hanoi) Hantrakul and Chenjie Gu and Adam Roberts DDSP: Differentiable
Digital Signal Processing International Conference on Learning Representations ICLR 2020 $

class asteroid.losses.PairwiseNegSDR(sdr_type, zero_mean=True, take_log=True)
Bases: sphinx.ext.autodoc.importer._MockObject

Base class for pairwise negative SI-SDR, SD-SDR and SNR on a batch.

Parameters

• sdr_type (str) – choose between “snr” for plain SNR, “sisdr” for SI-SDR and “sdsdr”
for SD-SDR [1].

• zero_mean (bool, optional) – by default it zero mean the target and estimate before
computing the loss.

• take_log (bool, optional) – by default the log10 of sdr is returned.

Shape:

est_targets (torch.Tensor): Expected shape [batch, n_src, time]. Batch of target estimates.

targets (torch.Tensor): Expected shape [batch, n_src, time]. Batch of training targets.

Returns torch.Tensor – with shape [batch, n_src, n_src]. Pairwise losses.

Examples

>>> import torch
>>> from asteroid.losses import PITLossWrapper
>>> targets = torch.randn(10, 2, 32000)
>>> est_targets = torch.randn(10, 2, 32000)
>>> loss_func = PITLossWrapper(PairwiseNegSDR("sisdr"),
>>> pit_from='pairwise')
>>> loss = loss_func(est_targets, targets)

References

[1] Le Roux, Jonathan, et al. “SDR half-baked or well done.” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) 2019.

asteroid.losses.deep_clustering_loss(embedding, tgt_index, binary_mask=None)
Compute the deep clustering loss defined in [1].

Parameters

62 Chapter 12. Losses & Metrics

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

• embedding (torch.Tensor) – Estimated embeddings. Expected shape (batch, fre-
quency x frame, embedding_dim)

• tgt_index (torch.Tensor) – Dominating source index in each TF bin. Expected
shape: [batch, frequency, frame]

• binary_mask (torch.Tensor) – VAD in TF plane. Bool or Float. See aster-
oid.filterbanks.transforms.ebased_vad.

Returns torch.Tensor. Deep clustering loss for every batch sample.

Examples

>>> import torch
>>> from asteroid.losses.cluster import deep_clustering_loss
>>> spk_cnt = 3
>>> embedding = torch.randn(10, 5*400, 20)
>>> targets = torch.LongTensor([10, 400, 5]).random_(0, spk_cnt)
>>> loss = deep_clustering_loss(embedding, targets)

Reference

[1] Zhong-Qiu Wang, Jonathan Le Roux, John R. Hershey “ALTERNATIVE OBJECTIVE FUNC-
TIONS FOR DEEP CLUSTERING”

Note: Be careful in viewing the embedding tensors. The target indices tgt_index are of shape (batch, freq,
frames). Even if the embedding is of shape (batch, freq*frames, emb), the underlying view should be (batch,
freq, frames, emb) and not (batch, frames, freq, emb).

12.1 Permutation invariant training (PIT) made easy

class asteroid.losses.pit_wrapper.PITLossWrapper(loss_func, pit_from=’pw_mtx’,
perm_reduce=None)

Bases: sphinx.ext.autodoc.importer._MockObject

Permutation invariant loss wrapper.

Parameters

• loss_func – function with signature (targets, est_targets, **kwargs).

• pit_from (str) – Determines how PIT is applied.

– 'pw_mtx' (pairwise matrix): loss_func computes pairwise losses and returns a
torch.Tensor of shape (𝑏𝑎𝑡𝑐ℎ, 𝑛_𝑠𝑟𝑐, 𝑛_𝑠𝑟𝑐). Each element [𝑏𝑎𝑡𝑐ℎ, 𝑖, 𝑗] corresponds to
the loss between 𝑡𝑎𝑟𝑔𝑒𝑡𝑠[:, 𝑖] and 𝑒𝑠𝑡_𝑡𝑎𝑟𝑔𝑒𝑡𝑠[:, 𝑗]

– 'pw_pt' (pairwise point): loss_func computes the loss for a batch of single source
and single estimates (tensors won’t have the source axis). Output shape : (𝑏𝑎𝑡𝑐ℎ). See
get_pw_losses().

– ‘‘’perm_avg’‘‘(permutation average): loss_func computes the average loss for a
given permutations of the sources and estimates. Output shape : (𝑏𝑎𝑡𝑐ℎ). See
best_perm_from_perm_avg_loss().

In terms of efficiency, 'perm_avg' is the least efficicient.

12.1. Permutation invariant training (PIT) made easy 63

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str

asteroid Documentation, Release 0.4.0alpha

• perm_reduce (Callable) – torch function to reduce permutation losses. Defaults to
None (equivalent to mean). Signature of the func (pwl_set, **kwargs) : (B, n_src!, n_src)
–> (B, n_src!). perm_reduce can receive **kwargs during forward using the reduce_kwargs
argument (dict). If those argument are static, consider defining a small function or using
functools.partial. Only used in ‘pw_mtx’ and ‘pw_pt’ pit_from modes.

For each of these modes, the best permutation and reordering will be automatically computed.

Examples

>>> import torch
>>> from asteroid.losses import pairwise_neg_sisdr
>>> sources = torch.randn(10, 3, 16000)
>>> est_sources = torch.randn(10, 3, 16000)
>>> # Compute PIT loss based on pairwise losses
>>> loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from='pw_mtx')
>>> loss_val = loss_func(est_sources, sources)
>>>
>>> # Using reduce
>>> def reduce(perm_loss, src):
>>> weighted = perm_loss * src.norm(dim=-1, keepdim=True)
>>> return torch.mean(weighted, dim=-1)
>>>
>>> loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from='pw_mtx',
>>> perm_reduce=reduce)
>>> reduce_kwargs = {'src': sources}
>>> loss_val = loss_func(est_sources, sources,
>>> reduce_kwargs=reduce_kwargs)

static best_perm_from_perm_avg_loss(loss_func, est_targets, targets, **kwargs)
Find best permutation from loss function with source axis.

Parameters

• loss_func – function with signature (targets, est_targets, **kwargs) The loss function
batch losses from.

• est_targets – torch.Tensor. Expected shape [batch, nsrc, *]. The batch of target
estimates.

• targets – torch.Tensor. Expected shape [batch, nsrc, *]. The batch of training targets.

• **kwargs – additional keyword argument that will be passed to the loss function.

Returns

tuple – torch.Tensor: The loss corresponding to the best permutation of size (batch,).

torch.LongTensor: The indexes of the best permutations.

static find_best_perm(pair_wise_losses, n_src, perm_reduce=None, **kwargs)
Find the best permutation, given the pair-wise losses.

Parameters

• pair_wise_losses (torch.Tensor) – Tensor of shape [batch, n_src, n_src]. Pair-
wise losses.

• n_src (int) – Number of sources.

64 Chapter 12. Losses & Metrics

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

• perm_reduce (Callable) – torch function to reduce permutation losses. Defaults to
None (equivalent to mean). Signature of the func (pwl_set, **kwargs) : (B, n_src!, n_src)
–> (B, n_src!)

• **kwargs – additional keyword argument that will be passed to the permutation reduce
function.

Returns

tuple – torch.Tensor: The loss corresponding to the best permutation of size (batch,).

torch.LongTensor: The indexes of the best permutations.

MIT Copyright (c) 2018 Kaituo XU. See Original code and License.

forward(est_targets, targets, return_est=False, reduce_kwargs=None, **kwargs)
Find the best permutation and return the loss.

Parameters

• est_targets – torch.Tensor. Expected shape [batch, nsrc, *]. The batch of target
estimates.

• targets – torch.Tensor. Expected shape [batch, nsrc, *]. The batch of training targets

• return_est – Boolean. Whether to return the reordered targets estimates (To compute
metrics or to save example).

• reduce_kwargs (dict or None) – kwargs that will be passed to the pairwise losses
reduce function (perm_reduce).

• **kwargs – additional keyword argument that will be passed to the loss function.

Returns

• Best permutation loss for each batch sample, average over the batch.
torch.Tensor(loss_value)

• The reordered targets estimates if return_est is True. torch.Tensor of shape [batch,
nsrc, *].

static get_pw_losses(loss_func, est_targets, targets, **kwargs)
Get pair-wise losses between the training targets and its estimate for a given loss function.

Parameters

• loss_func – function with signature (targets, est_targets, **kwargs) The loss function
to get pair-wise losses from.

• est_targets – torch.Tensor. Expected shape [batch, nsrc, *]. The batch of target
estimates.

• targets – torch.Tensor. Expected shape [batch, nsrc, *]. The batch of training targets.

• **kwargs – additional keyword argument that will be passed to the loss function.

Returns torch.Tensor or size [batch, nsrc, nsrc], losses computed for all permutations of the
targets and est_targets.

This function can be called on a loss function which returns a tensor of size [batch]. There are more
efficient ways to compute pair-wise losses using broadcasting.

static reorder_source(source, n_src, min_loss_idx)
Reorder sources according to the best permutation.

Parameters

12.1. Permutation invariant training (PIT) made easy 65

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://github.com/kaituoxu/Conv-TasNet/blob/master
https://github.com/kaituoxu/Conv-TasNet/blob/master/LICENSE
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

asteroid Documentation, Release 0.4.0alpha

• source (torch.Tensor) – Tensor of shape [batch, n_src, time]

• n_src (int) – Number of sources.

• min_loss_idx (torch.LongTensor) – Tensor of shape [batch], each item is in [0,
n_src!).

Returns torch.Tensor – Reordered sources of shape [batch, n_src, time].

MIT Copyright (c) 2018 Kaituo XU. See Original code and License.

12.2 Available loss functions

PITLossWrapper supports three types of loss function. For “easy” losses, we implement the three types (pairwise
point, single-source loss and multi-source loss). For others, we only implement the single-source loss which can be
aggregated into both PIT and nonPIT training.

12.2.1 MSE

asteroid.losses.mse.PairwiseMSE(*args, **kwargs)
Measure pairwise mean square error on a batch.

Shape:

est_targets (torch.Tensor): Expected shape [batch, nsrc, *]. The batch of target estimates.

targets (torch.Tensor): Expected shape [batch, nsrc, *]. The batch of training targets

Returns torch.Tensor – with shape [batch, nsrc, nsrc]

Examples

>>> import torch
>>> from asteroid.losses import PITLossWrapper
>>> targets = torch.randn(10, 2, 32000)
>>> est_targets = torch.randn(10, 2, 32000)
>>> loss_func = PITLossWrapper(PairwiseMSE(), pit_from='pairwise')
>>> loss = loss_func(est_targets, targets)

asteroid.losses.mse.SingleSrcMSE(*args, **kwargs)
Measure mean square error on a batch. Supports both tensors with and without source axis.

Shape:

est_targets (torch.Tensor): Expected shape [batch, *]. The batch of target estimates.

targets (torch.Tensor): Expected shape [batch, *]. The batch of training targets.

Returns torch.Tensor – with shape [batch]

Examples

66 Chapter 12. Losses & Metrics

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://github.com/kaituoxu/Conv-TasNet/blob/master
https://github.com/kaituoxu/Conv-TasNet/blob/master/LICENSE
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

>>> import torch
>>> from asteroid.losses import PITLossWrapper
>>> targets = torch.randn(10, 2, 32000)
>>> est_targets = torch.randn(10, 2, 32000)
>>> # singlesrc_mse / multisrc_mse support both 'pw_pt' and 'perm_avg'.
>>> loss_func = PITLossWrapper(singlesrc_mse, pit_from='pw_pt')
>>> loss = loss_func(est_targets, targets)

asteroid.losses.mse.MultiSrcMSE(*args, **kwargs)
Measure mean square error on a batch. Supports both tensors with and without source axis.

Shape:

est_targets (torch.Tensor): Expected shape [batch, *]. The batch of target estimates.

targets (torch.Tensor): Expected shape [batch, *]. The batch of training targets.

Returns torch.Tensor – with shape [batch]

Examples

>>> import torch
>>> from asteroid.losses import PITLossWrapper
>>> targets = torch.randn(10, 2, 32000)
>>> est_targets = torch.randn(10, 2, 32000)
>>> # singlesrc_mse / multisrc_mse support both 'pw_pt' and 'perm_avg'.
>>> loss_func = PITLossWrapper(singlesrc_mse, pit_from='pw_pt')
>>> loss = loss_func(est_targets, targets)

12.2.2 SDR

asteroid.losses.sdr.PairwiseNegSDR(*args, **kwargs)
Base class for pairwise negative SI-SDR, SD-SDR and SNR on a batch.

Parameters

• sdr_type (str) – choose between “snr” for plain SNR, “sisdr” for SI-SDR and “sdsdr”
for SD-SDR [1].

• zero_mean (bool, optional) – by default it zero mean the target and estimate before
computing the loss.

• take_log (bool, optional) – by default the log10 of sdr is returned.

Shape:

est_targets (torch.Tensor): Expected shape [batch, n_src, time]. Batch of target estimates.

targets (torch.Tensor): Expected shape [batch, n_src, time]. Batch of training targets.

Returns torch.Tensor – with shape [batch, n_src, n_src]. Pairwise losses.

Examples

12.2. Available loss functions 67

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

>>> import torch
>>> from asteroid.losses import PITLossWrapper
>>> targets = torch.randn(10, 2, 32000)
>>> est_targets = torch.randn(10, 2, 32000)
>>> loss_func = PITLossWrapper(PairwiseNegSDR("sisdr"),
>>> pit_from='pairwise')
>>> loss = loss_func(est_targets, targets)

References

[1] Le Roux, Jonathan, et al. “SDR half-baked or well done.” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) 2019.

asteroid.losses.sdr.SingleSrcNegSDR(*args, **kwargs)
Base class for single-source negative SI-SDR, SD-SDR and SNR.

Parameters

• sdr_type (string) – choose between “snr” for plain SNR, “sisdr” for SI-SDR and
“sdsdr” for SD-SDR [1].

• zero_mean (bool, optional) – by default it zero mean the target and estimate before
computing the loss.

• take_log (bool, optional) – by default the log10 of sdr is returned.

• reduction (string, optional) – Specifies the reduction to apply to the output:

• | 'mean'. 'none' ('none') – no reduction will be applied,

• 'mean' – the sum of the output will be divided by the number of

• in the output. (elements) –

Shape:

est_targets (torch.Tensor): Expected shape [batch, time]. Batch of target estimates.

targets (torch.Tensor): Expected shape [batch, time]. Batch of training targets.

Returns

torch.Tensor –

with shape [batch] if reduction=’none’ else [] scalar if reduction=’mean’.

Examples

>>> import torch
>>> from asteroid.losses import PITLossWrapper
>>> targets = torch.randn(10, 2, 32000)
>>> est_targets = torch.randn(10, 2, 32000)
>>> loss_func = PITLossWrapper(SingleSrcNegSDR("sisdr"),
>>> pit_from='pw_pt')
>>> loss = loss_func(est_targets, targets)

68 Chapter 12. Losses & Metrics

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

References

[1] Le Roux, Jonathan, et al. “SDR half-baked or well done.” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) 2019.

asteroid.losses.sdr.MultiSrcNegSDR(*args, **kwargs)
Base class for computing negative SI-SDR, SD-SDR and SNR for a given permutation of source and their
estimates.

Parameters

• sdr_type (string) – choose between “snr” for plain SNR, “sisdr” for SI-SDR and
“sdsdr” for SD-SDR [1].

• zero_mean (bool, optional) – by default it zero mean the target and estimate before
computing the loss.

• take_log (bool, optional) – by default the log10 of sdr is returned.

Shape:

est_targets (torch.Tensor): Expected shape [batch, time]. Batch of target estimates.

targets (torch.Tensor): Expected shape [batch, time]. Batch of training targets.

Returns

torch.Tensor –

with shape [batch] if reduction=’none’ else [] scalar if reduction=’mean’.

Examples

>>> import torch
>>> from asteroid.losses import PITLossWrapper
>>> targets = torch.randn(10, 2, 32000)
>>> est_targets = torch.randn(10, 2, 32000)
>>> loss_func = PITLossWrapper(MultiSrcNegSDR("sisdr"),
>>> pit_from='perm_avg')
>>> loss = loss_func(est_targets, targets)

References

[1] Le Roux, Jonathan, et al. “SDR half-baked or well done.” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) 2019.

12.2.3 PMSQE

asteroid.losses.pmsqe.SingleSrcPMSQE(*args, **kwargs)
Computes the Perceptual Metric for Speech Quality Evaluation (PMSQE) as described in [1]. This version is
only designed for 16 kHz (512 length DFT). Adaptation to 8 kHz could be done by changing the parameters
of the class (see Tensorflow implementation). The SLL, frequency and gain equalization are applied in each
sequence independently.

Parameters

12.2. Available loss functions 69

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

• window_name (str) – Select the used window function for the correct factor to be ap-
plied. Defaults to sqrt hanning window. Among [‘rect’, ‘hann’, ‘sqrt_hann’, ‘hamming’,
‘flatTop’].

• window_weight (float, optional) – Correction to the window factor applied.

• bark_eq (bool, optional) – Whether to apply bark equalization.

• gain_eq (bool, optional) – Whether to apply gain equalization.

• sample_rate (int) – Sample rate of the input audio.

References

[1] J.M.Martin, A.M.Gomez, J.A.Gonzalez, A.M.Peinado ‘A Deep Learning Loss Function based on the Per-
ceptual Evaluation of the Speech Quality’, IEEE Signal Processing Letters, 2018. Implemented by Juan M.
Martin. Contact: mdjuamart@ugr.es Copyright 2019: University of Granada, Signal Processing, Multimedia
Transmission and Speech/Audio Technologies (SigMAT) Group.

Note: Inspired on the Perceptual Evaluation of the Speech Quality (PESQ) algorithm, this function consists of
two regularization factors : the symmetrical and asymmetrical distortion in the loudness domain.

Examples

>>> import torch
>>> from asteroid.filterbanks import STFTFB, Encoder, transforms
>>> from asteroid.losses import PITLossWrapper, SingleSrcPMSQE
>>> stft = Encoder(STFTFB(kernel_size=512, n_filters=512, stride=256))
>>> # Usage by itself
>>> ref, est = torch.randn(2, 1, 16000), torch.randn(2, 1, 16000)
>>> ref_spec = transforms.take_mag(stft(ref))
>>> est_spec = transforms.take_mag(stft(est))
>>> loss_func = SingleSrcPMSQE()
>>> loss_value = loss_func(est_spec, ref_spec)
>>> # Usage with PITLossWrapper
>>> loss_func = PITLossWrapper(SingleSrcPMSQE(), pit_from='pw_pt')
>>> ref, est = torch.randn(2, 3, 16000), torch.randn(2, 3, 16000)
>>> ref_spec = transforms.take_mag(stft(ref))
>>> est_spec = transforms.take_mag(stft(est))
>>> loss_value = loss_func(ref_spec, est_spec)

12.2.4 STOI

asteroid.losses.stoi.NegSTOILoss(*args, **kwargs)

Negated Short Term Objective Intelligibility (STOI) metric, to be used as a loss function. Inspired from [1,
2, 3] but not exactly the same : cannot be used as the STOI metric directly (use pystoi instead). See Notes.

Parameters

• sample_rate (int) – sample rate of the audio files

• use_vad (bool) – Whether to use simple VAD (see Notes)

• extended (bool) – Whether to compute extended version [3].

70 Chapter 12. Losses & Metrics

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
mailto:mdjuamart@ugr.es
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

asteroid Documentation, Release 0.4.0alpha

Shapes: (time,) –> (1,) (batch, time) –> (batch,) (batch, n_src, time) –> (batch, n_src)

Returns torch.Tensor of shape (batch, *,), only the time dimension has been reduced.

Note: In the NumPy version, some kind of simple VAD was used to remove the silent frames before chunking
the signal into short-term envelope vectors. We don’t do the same here because removing frames in a batch is
cumbersome and inefficient. If use_vad is set to True, instead we detect the silent frames and keep a mask tensor.
At the end, the normalized correlation of short-term envelope vectors is masked using this mask (unfolded) and
the mean is computed taking the mask values into account.

Examples

>>> import torch
>>> from asteroid.losses import PITLossWrapper
>>> targets = torch.randn(10, 2, 32000)
>>> est_targets = torch.randn(10, 2, 32000)
>>> loss_func = PITLossWrapper(NegSTOILoss(sample_rate=8000), pit_from='pw_pt')
>>> loss = loss_func(est_targets, targets)

References

[1] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen ‘A Short-Time Objective Intelligibility Measure
for Time-Frequency Weighted Noisy Speech’, ICASSP 2010, Texas, Dallas.

[2] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen ‘An Algorithm for Intelligibility Prediction of
Time-Frequency Weighted Noisy Speech’, IEEE Transactions on Audio, Speech, and Language
Processing, 2011.

[3] Jesper Jensen and Cees H. Taal, ‘An Algorithm for Predicting the Intelligibility of Speech
Masked by Modulated Noise Maskers’, IEEE Transactions on Audio, Speech and Language
Processing, 2016.

12.2.5 MultiScale Spectral Loss

asteroid.losses.multi_scale_spectral.SingleSrcMultiScaleSpectral(*args,
**kwargs)

Measure multi-scale spectral loss as described in [1]

Parameters

• n_filters (list) – list containing the number of filter desired for each STFT

• windows_size (list) – list containing the size of the window desired for each STFT

• hops_size (list) – list containing the size of the hop desired for each STFT

Shape:

est_targets (torch.Tensor): Expected shape [batch, time]. Batch of target estimates.

targets (torch.Tensor): Expected shape [batch, time]. Batch of training targets.

alpha (float) : Weighting factor for the log term

Returns torch.Tensor – with shape [batch]

12.2. Available loss functions 71

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

Examples

>>> import torch
>>> targets = torch.randn(10, 32000)
>>> est_targets = torch.randn(10, 32000)
>>> # Using it by itself on a pair of source/estimate
>>> loss_func = SingleSrcMultiScaleSpectral()
>>> loss = loss_func(est_targets, targets)

>>> import torch
>>> from asteroid.losses import PITLossWrapper
>>> targets = torch.randn(10, 2, 32000)
>>> est_targets = torch.randn(10, 2, 32000)
>>> # Using it with PITLossWrapper with sets of source/estimates
>>> loss_func = PITLossWrapper(SingleSrcMultiScaleSpectral(),
>>> pit_from='pw_pt')
>>> loss = loss_func(est_targets, targets)

References

[1] Jesse Engel and Lamtharn (Hanoi) Hantrakul and Chenjie Gu and Adam Roberts DDSP: Differentiable
Digital Signal Processing International Conference on Learning Representations ICLR 2020 $

12.2.6 Deep clustering (Affinity) loss

asteroid.losses.cluster.deep_clustering_loss(embedding, tgt_index, bi-
nary_mask=None)

Compute the deep clustering loss defined in [1].

Parameters

• embedding (torch.Tensor) – Estimated embeddings. Expected shape (batch, fre-
quency x frame, embedding_dim)

• tgt_index (torch.Tensor) – Dominating source index in each TF bin. Expected
shape: [batch, frequency, frame]

• binary_mask (torch.Tensor) – VAD in TF plane. Bool or Float. See aster-
oid.filterbanks.transforms.ebased_vad.

Returns torch.Tensor. Deep clustering loss for every batch sample.

Examples

>>> import torch
>>> from asteroid.losses.cluster import deep_clustering_loss
>>> spk_cnt = 3
>>> embedding = torch.randn(10, 5*400, 20)
>>> targets = torch.LongTensor([10, 400, 5]).random_(0, spk_cnt)
>>> loss = deep_clustering_loss(embedding, targets)

Reference

[1] Zhong-Qiu Wang, Jonathan Le Roux, John R. Hershey “ALTERNATIVE OBJECTIVE FUNC-
TIONS FOR DEEP CLUSTERING”

72 Chapter 12. Losses & Metrics

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

Note: Be careful in viewing the embedding tensors. The target indices tgt_index are of shape (batch, freq,
frames). Even if the embedding is of shape (batch, freq*frames, emb), the underlying view should be (batch,
freq, frames, emb) and not (batch, frames, freq, emb).

12.3 Computing metrics

asteroid.metrics.get_metrics(mix, clean, estimate, sample_rate=16000, metrics_list=’all’, aver-
age=True, compute_permutation=False)

Get speech separation/enhancement metrics from mix/clean/estimate.

Parameters

• mix (np.array) – ‘Shape(D, N)’ or ‘Shape(N,)’.

• clean (np.array) – ‘Shape(K_source, N)’ or ‘Shape(N,)’.

• estimate (np.array) – ‘Shape(K_target, N)’ or ‘Shape(N,)’.

• sample_rate (int) – sampling rate of the audio clips.

• metrics_list (Union [str, list]) – List of metrics to compute. Defaults to ‘all’
([‘si_sdr’, ‘sdr’, ‘sir’, ‘sar’, ‘stoi’, ‘pesq’]).

• average (bool) – Return dict([float]) if True, else dict([array]).

• compute_permutation (bool) – Whether to compute the permutation on estimate
sources for the output metrics (default False)

Returns

dict –

Dictionary with all requested metrics, with ‘input_’ prefix for metrics at the input (mixture
against clean), no prefix at the output (estimate against clean). Output format depends on
average.

Examples

>>> import numpy as np
>>> import pprint
>>> from asteroid.metrics import get_metrics
>>> mix = np.random.randn(1, 16000)
>>> clean = np.random.randn(2, 16000)
>>> est = np.random.randn(2, 16000)
>>> metrics_dict = get_metrics(mix, clean, est, sample_rate=8000,
>>> metrics_list='all')
>>> pprint.pprint(metrics_dict)
{'input_pesq': 1.924380898475647,
'input_sar': -11.67667585294225,
'input_sdr': -14.88667106190552,
'input_si_sdr': -52.43849784881705,
'input_sir': -0.10419427290163795,
'input_stoi': 0.015112115177091223,
'pesq': 1.7713886499404907,
'sar': -11.610963379923195,
'sdr': -14.527246041125844,

(continues on next page)

12.3. Computing metrics 73

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

asteroid Documentation, Release 0.4.0alpha

(continued from previous page)

'si_sdr': -46.26557128489802,
'sir': 0.4799929272243427,
'stoi': 0.022023073540350643}

74 Chapter 12. Losses & Metrics

CHAPTER 13

Lightning Wrapper

As explained in Training and Evaluation, Asteroid provides a thin wrapper on the top of PyTorchLightning for
training your models.

75

asteroid Documentation, Release 0.4.0alpha

76 Chapter 13. Lightning Wrapper

CHAPTER 14

Optimizers & Schedulers

14.1 Optimizers

Asteroid relies on torch_optimizer and torch for optimizers. We provide a simple get method that retrieves
optimizers from string, which makes it easy to specify optimizers from the command line.

Here is a list of supported optimizers, retrievable from string:

• AccSGD

• AdaBound

• AdaMod

• DiffGrad

• Lamb

• NovoGrad

• PID

• QHAdam

• QHM

• RAdam

• SGDW

• Yogi

• Ranger

• RangerQH

• RangerVA

• Adam

• RMSprop

77

asteroid Documentation, Release 0.4.0alpha

• SGD

• Adadelta

• Adagrad

• Adamax

• AdamW

• ASG

14.2 Schedulers

Asteroid provides step-wise learning schedulers, integrable to pytorch-lightning via System.

78 Chapter 14. Optimizers & Schedulers

CHAPTER 15

DSP Modules

class asteroid.dsp.LambdaOverlapAdd(nnet, n_src, window_size, hop_size=None, win-
dow=’hanning’, reorder_chunks=True, en-
able_grad=False)

Bases: sphinx.ext.autodoc.importer._MockObject

Overlap-add with lambda transform on segments.

Segment input signal, apply lambda function (a neural network for example) and combine with OLA.

Parameters

• nnet (callable) – Function to apply to each segment.

• n_src (int) – Number of sources in the output of nnet.

• window_size (int) – Size of segmenting window.

• hop_size (int) – Segmentation hop size.

• window (str) – Name of the window (see scipy.signal.get_window) used for the synthesis.

• reorder_chunks – Whether to reorder each consecutive segment. This might be useful
when nnet is permutation invariant, as source assignements might change output channel
from one segment to the next (in classic speech separation for example). Reordering is
performed based on the correlation between the overlapped part of consecutive segment.

forward(x)
Forward module: segment signal, apply func, combine with OLA.

Parameters x (torch.Tensor) – waveform signal of shape (batch, 1, time).

Returns torch.Tensor – The output of the lambda OLA.

ola_forward(x)
Heart of the class: segment signal, apply func, combine with OLA.

class asteroid.dsp.DualPathProcessing(chunk_size, hop_size)
Bases: sphinx.ext.autodoc.importer._MockObject

Perform Dual-Path processing via overlap-add as in DPRNN [1].

79

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

Args: chunk_size (int): Size of segmenting window. hop_size (int): segmentation hop size.

References

[1] “Dual-path RNN: efficient long sequence modeling for time-domain single-channel speech separation”,
Yi Luo, Zhuo Chen and Takuya Yoshioka. https://arxiv.org/abs/1910.06379

fold(x, output_size=None)
Folds back the spliced feature tensor.

Input shape (batch, channels, chunk_size, n_chunks) to original shape (batch, channels, time) using
overlap-add.

Parameters

• x – (torch.Tensor): spliced feature tensor of shape (batch, channels, chunk_size,
n_chunks).

• output_size – (int, optional): sequence length of original feature tensor. If None, the
original length cached by the previous call of unfold will be used.

Returns x – (torch.Tensor): feature tensor of shape (batch, channels, time).

Note: fold caches the original length of the pr

static inter_process(x, module)
Performs inter-chunk processing.

Parameters

• x (torch.Tensor) – spliced feature tensor of shape (batch, channels, chunk_size,
n_chunks).

• module (torch.nn.Module) – module one wish to apply between each chunk of the
spliced feature tensor.

Returns

x (torch.Tensor) –

processed spliced feature tensor of shape (batch, channels, chunk_size, n_chunks).

Note: the module should have the channel first convention and accept a 3D tensor of shape (batch,
channels, time).

static intra_process(x, module)
Performs intra-chunk processing.

Parameters

• x (torch.Tensor) – spliced feature tensor of shape (batch, channels, chunk_size,
n_chunks).

• module (torch.nn.Module) – module one wish to apply to each chunk of the spliced
feature tensor.

Returns

x (torch.Tensor) –

80 Chapter 15. DSP Modules

https://arxiv.org/abs/1910.06379
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

processed spliced feature tensor of shape (batch, channels, chunk_size, n_chunks).

Note: the module should have the channel first convention and accept a 3D tensor of shape (batch,
channels, time).

unfold(x)
Unfold the feature tensor from

(batch, channels, time) to (batch, channels, chunk_size, n_chunks).

Parameters x – (torch.Tensor): feature tensor of shape (batch, channels, time).

Returns

x –

(torch.Tensor): spliced feature tensor of shape (batch, channels, chunk_size,
n_chunks).

asteroid.dsp.mixture_consistency(mixture, est_sources, src_weights=None, dim=1)
Applies mixture consistency to a tensor of estimated sources.

Args mixture (torch.Tensor): Mixture waveform or TF representation. est_sources (torch.Tensor): Estimated
sources waveforms or TF

representations.

src_weights (torch.Tensor): Consistency weight for each source. Shape needs to be broadcastable to
est_source. We make sure that the weights sum up to 1 along dim dim. If src_weights is None,
compute them based on relative power.

dim (int): Axis which contains the sources in est_sources.

Returns torch.Tensor with same shape as est_sources, after applying mixture consistency.

Notes This method can be used only in ‘complete’ separation tasks, otherwise the residual error will contain
unwanted sources. For example, this won’t work with the task sep_noisy from WHAM.

Examples

>>> # Works on waveforms
>>> mix = torch.randn(10, 16000)
>>> est_sources = torch.randn(10, 2, 16000)
>>> new_est_sources = mixture_consistency(mix, est_sources, dim=1)
>>> # Also works on spectrograms
>>> mix = torch.randn(10, 514, 400)
>>> est_sources = torch.randn(10, 2, 514, 400)
>>> new_est_sources = mixture_consistency(mix, est_sources, dim=1)

References Scott Wisdom, John R Hershey, Kevin Wilson, Jeremy Thorpe, Michael Chinen, Brian Patton, and
Rif A Saurous. “Differentiable consistency constraints for improved deep speech enhancement”, ICASSP
2019.

81

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

82 Chapter 15. DSP Modules

CHAPTER 16

Utils

16.1 Parser utils

Asteroid has its own argument parser (built on argparse) that handles dict-like structure, created from a config
YAML file.

asteroid.utils.parser_utils.isfloat(value)
Computes whether value can be cast to a float.

Parameters value (str) – Value to check.

Returns bool – Whether value can be cast to a float.

asteroid.utils.parser_utils.isint(value)
Computes whether value can be cast to an int

Parameters value (str) – Value to check.

Returns bool – Whether value can be cast to an int.

asteroid.utils.parser_utils.parse_args_as_dict(parser, return_plain_args=False,
args=None)

Get a dict of dicts out of process parser.parse_args()

Top-level keys corresponding to groups and bottom-level keys corresponding to arguments. Under ‘main_args’,
the arguments which don’t belong to a argparse group (i.e main arguments defined before parsing from a dict)
can be found.

Parameters

• parser (argparse.ArgumentParser) – ArgumentParser instance containing
groups. Output of prepare_parser_from_dict.

• return_plain_args (bool) – Whether to return the output or parser.parse_args().

• args (list) – List of arguments as read from the command line. Used for unit testing.

Returns dict – Dictionary of dictionaries containing the arguments. Optionally the direct output
parser.parse_args().

83

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

asteroid Documentation, Release 0.4.0alpha

asteroid.utils.parser_utils.prepare_parser_from_dict(dic, parser=None)
Prepare an argparser from a dictionary.

Parameters

• dic (dict) – Two-level config dictionary with unique bottom-level keys.

• parser (argparse.ArgumentParser, optional) – If a parser already exists,
add the keys from the dictionary on the top of it.

Returns argparse.ArgumentParser – Parser instance with groups corresponding to the first level
keys and arguments corresponding to the second level keys with default values given by the
values.

asteroid.utils.parser_utils.str2bool(value)
Type to convert strings to Boolean (returns input if not boolean)

asteroid.utils.parser_utils.str2bool_arg(value)
Argparse type to convert strings to Boolean

asteroid.utils.parser_utils.str_int_float(value)
Type to convert strings to int, float (in this order) if possible.

Parameters value (str) – Value to convert.

Returns int, float, str – Converted value.

16.2 Torch utils

asteroid.utils.torch_utils.are_models_equal(model1, model2)
Check for weights equality between models.

Parameters

• model1 (nn.Module) – model instance to be compared.

• model2 (nn.Module) – second model instance to be compared.

Returns bool – Whether all model weights are equal.

asteroid.utils.torch_utils.load_state_dict_in(state_dict, model)

Strictly loads state_dict in model, or the next submodel. Useful to load standalone model after training it
with System.

Parameters

• state_dict (OrderedDict) – the state_dict to load.

• model (torch.nn.Module) – the model to load it into

Returns torch.nn.Module – model with loaded weights.

.. note:: Keys in a state_dict look like object1.object2.layer_name.weight.etc We first try to load the
model in the classic way. If this fail we removes the first left part of the key to obtain ob-
ject2.layer_name.weight.etc. Blindly loading with strictly=False should be done with some logging of
the missing keys in the state_dict and the model.

asteroid.utils.torch_utils.pad_x_to_y(x, y, axis=-1)
Pad first argument to have same size as second argument

Parameters

84 Chapter 16. Utils

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module

asteroid Documentation, Release 0.4.0alpha

• x (torch.Tensor) – Tensor to be padded.

• y (torch.Tensor) – Tensor to pad x to.

• axis (int) – Axis to pad on.

Returns torch.Tensor, x padded to match y’s shape.

asteroid.utils.torch_utils.tensors_to_device(tensors, device)
Transfer tensor, dict or list of tensors to device.

Parameters

• tensors (torch.Tensor) – May be a single, a list or a dictionary of tensors.

• ((device) – class: torch.device): the device where to place the tensors.

Returns Union [torch.Tensor, list, tuple, dict] – Same as input but transferred to device. Goes
through lists and dicts and transfers the torch.Tensor to device. Leaves the rest untouched.

asteroid.utils.torch_utils.to_cuda(tensors)
Transfer tensor, dict or list of tensors to GPU.

Parameters tensors (torch.Tensor, list or dict) – May be a single, a list or a dictionary of
tensors.

Returns torch.Tensor – Same as input but transferred to cuda. Goes through lists and dicts and
transfers the torch.Tensor to cuda. Leaves the rest untouched.

16.3 Hub utils

asteroid.utils.hub_utils.cached_download(filename_or_url)
Download from URL with torch.hub and cache the result in ASTEROID_CACHE.

Parameters filename_or_url (str) – Name of a model as named on the Zenodo Commu-
nity page (ex: mpariente/ConvTasNet_WHAM!_sepclean), or an URL to a model file (ex:
https://zenodo.org/. . . /model.pth), or a filename that exists locally (ex: local/tmp_model.pth)

Returns str, normalized path to the downloaded (or not) model

asteroid.utils.hub_utils.url_to_filename(url)
Consistently convert url into a filename.

16.4 Generic utils

asteroid.utils.generic_utils.average_arrays_in_dic(dic)
Take average of numpy arrays in a dictionary.

Parameters dic (dict) – Input dictionary to take average from

Returns dict – New dictionary with array averaged.

asteroid.utils.generic_utils.flatten_dict(d, parent_key=”, sep=’_’)
Flattens a dictionary into a single-level dictionary while preserving parent keys. Taken from https://
stackoverflow.com/questions/6027558/ flatten-nested-dictionaries-compressing-keys?answertab=votes#tab-top

Parameters

• d (MutableMapping) – Dictionary to be flattened.

• parent_key (str) – String to use as a prefix to all subsequent keys.

16.3. Hub utils 85

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://zenodo.org/.../model.pth
https://docs.python.org/3/library/stdtypes.html#dict
https://stackoverflow.com/questions/6027558/
https://stackoverflow.com/questions/6027558/
https://docs.python.org/3/library/stdtypes.html#str

asteroid Documentation, Release 0.4.0alpha

• sep (str) – String to use as a separator between two key levels.

Returns dict – Single-level dictionary, flattened.

asteroid.utils.generic_utils.get_wav_random_start_stop(signal_len, de-
sired_len=32000)

Get indexes for a chunk of signal of a given length.

Parameters

• signal_len (int) – length of the signal to trim.

• desired_len (int) – the length of [start:stop]

Returns tuple – random start integer, stop integer.

asteroid.utils.generic_utils.has_arg(fn, name)
Checks if a callable accepts a given keyword argument.

Parameters

• fn (callable) – Callable to inspect.

• name (str) – Check if fn can be called with name as a keyword argument.

Returns bool – whether fn accepts a name keyword argument.

asteroid.utils.generic_utils.unet_decoder_args(encoders, *, skip_connections)
Get list of decoder arguments for upsampling (right) side of a symmetric u-net, given the arguments used to
construct the encoder.

Parameters

• encoders (list of length N of tuples of (in_chan, out_chan, kernel_size, stride, padding))
– List of arguments used to construct the encoders

• skip_connections (bool) – Whether to include skip connections in the calculation of
decoder input channels.

Returns list of length N of tuples of (in_chan, out_chan, kernel_size, stride, padding) – Arguments
to be used to construct decoders

86 Chapter 16. Utils

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

CHAPTER 17

CLI

87

asteroid Documentation, Release 0.4.0alpha

88 Chapter 17. CLI

CHAPTER 18

Asteroid High-Level Contribution Guide

Asteroid is a Pytorch-based audio source separation toolkit that enables fast experimentation on common datasets.

18.1 The Asteroid Contribution Process

The Asteroid development process involves a healthy amount of open discussions between the core development team
and the community.

Asteroid operates similar to most open source projects on GitHub. However, if you’ve never contributed to an open
source project before, here is the basic process.

• Figure out what you’re going to work on. The majority of open source contributions come from people
scratching their own itches. However, if you don’t know what you want to work on, or are just looking to get
more acquainted with the project, here are some tips for how to find appropriate tasks:

– Look through the issue tracker and see if there are any issues you know how to fix. Issues that are confirmed
by other contributors tend to be better to investigate.

– Join us on Slack and let us know you’re interested in getting to know Asteroid. We’re very happy to help
out researchers and partners get up to speed with the codebase.

• Figure out the scope of your change and reach out for design comments on a GitHub issue if it’s large.
The majority of pull requests are small; in that case, no need to let us know about what you want to do, just get
cracking. But if the change is going to be large, it’s usually a good idea to get some design comments about it
first.

– If you don’t know how big a change is going to be, we can help you figure it out! Just post about it on
issues or Slack.

– Some feature additions are very standardized; for example, lots of people add new datasets or architectures
to Asteroid. Design discussion in these cases boils down mostly to, “Do we want this dataset/architecture?”
Giving evidence for its utility, e.g., usage in peer reviewed papers, or existence in other frameworks, helps
a bit when making this case.

89

https://github.com/mpariente/asteroid/issues/

asteroid Documentation, Release 0.4.0alpha

– Core changes and refactors can be quite difficult to coordinate, as the pace of development on Asteroid
master is quite fast. Definitely reach out about fundamental or cross-cutting changes; we can often give
guidance about how to stage such changes into more easily reviewable pieces.

• Code it out!

– See the technical guide and read the code for advice for working with Asteroid in a technical form.

• Open a pull request.

– If you are not ready for the pull request to be reviewed, tag it with [WIP]. We will ignore it when doing
review passes. If you are working on a complex change, it’s good to start things off as WIP, because you
will need to spend time looking at CI results to see if things worked out or not.

– Find an appropriate reviewer for your change. We have some folks who regularly go through the PR queue
and try to review everything, but if you happen to know who the maintainer for a given subsystem affected
by your patch is, feel free to include them directly on the pull request.

• Iterate on the pull request until it’s accepted!

– We’ll try our best to minimize the number of review roundtrips and block PRs only when there are major
issues. For the most common issues in pull requests, take a look at Common Mistakes.

– Once a pull request is accepted and CI is passing, there is nothing else you need to do; we will merge the
PR for you.

18.2 Getting Started

18.2.1 Proposing new features

New feature ideas are best discussed on a specific issue. Please include as much information as you can, any ac-
companying data, and your proposed solution. The Asteroid team and community frequently reviews new issues and
comments where they think they can help. If you feel confident in your solution, go ahead and implement it.

18.2.2 Reporting Issues

If you’ve identified an issue, first search through the list of existing issues on the repo. If you are unable to find a
similar issue, then create a new one. Supply as much information you can to reproduce the problematic behavior.
Also, include any additional insights like the behavior you expect.

18.2.3 Implementing Features or Fixing Bugs

If you want to fix a specific issue, it’s best to comment on the individual issue with your intent. However, we do
not lock or assign issues except in cases where we have worked with the developer before. It’s best to strike up a
conversation on the issue and discuss your proposed solution. We can provide guidance that saves you time.

18.2.4 Adding Tutorials

Most our tutorials come from our team but we are very open to additional contributions. Have a notebook leveraging
Asteroid? Open a PR to let us know!

90 Chapter 18. Asteroid High-Level Contribution Guide

https://github.com/mpariente/asteroid/issues

asteroid Documentation, Release 0.4.0alpha

18.2.5 Improving Documentation & Tutorials

We aim to produce high quality documentation and tutorials. On some occasions that content includes typos or bugs.
If you find something you can fix, send us a pull request for consideration.

Take a look at the Documentation section to learn how our system works.

18.2.6 Participating in online discussions

You can find active discussions happening on our slack workspace.

18.2.7 Submitting pull requests to fix open issues

You can view a list of all open issues here. Commenting on an issue is a great way to get the attention of the team.
From here you can share your ideas and how you plan to resolve the issue.

For more challenging issues, the team will provide feedback and direction for how to best solve the issue.

If you’re not able to fix the issue itself, commenting and sharing whether you can reproduce the issue can be useful for
helping the team identify problem areas.

18.2.8 Reviewing open pull requests

We appreciate your help reviewing and commenting on pull requests. Our team strives to keep the number of open
pull requests at a manageable size, we respond quickly for more information if we need it, and we merge PRs that we
think are useful. However, additional eyes on pull requests is always appreciated.

18.2.9 Improving code readability

Improve code readability helps everyone. We plan to integrate black/DeepSource in the CI process, but readability
issues can still persist and we’ll welcome your corrections.

18.2.10 Adding test cases to make the codebase more robust

Additional test coverage is always appreciated.

18.2.11 Promoting Asteroid

Your use of Asteroid in your projects, research papers, write ups, blogs, or general discussions around the internet
helps to raise awareness for Asteroid and our growing community. Please reach out to us for support.

18.2.12 Triaging issues

If you feel that an issue could benefit from a particular tag or level of complexity comment on the issue and share your
opinion. If an you feel an issue isn’t categorized properly comment and let the team know.

18.2. Getting Started 91

https://join.slack.com/t/asteroid-dev/shared_invite/zt-cn9y85t3-QNHXKD1Et7qoyzu1Ji5bcA
https://github.com/mpariente/asteroid/issues
http://mailto:pariente.mnl@gmail.com/

asteroid Documentation, Release 0.4.0alpha

18.3 About open source development

If this is your first time contributing to an open source project, some aspects of the development process may seem
unusual to you.

• There is no way to “claim” issues. People often want to “claim” an issue when they decide to work on it, to
ensure that there isn’t wasted work when someone else ends up working on it. This doesn’t really work too well
in open source, since someone may decide to work on something, and end up not having time to do it. Feel
free to give information in an advisory fashion, but at the end of the day, we will take running code and rough
consensus.

• There is a high bar for new functionality that is added. Unlike in a corporate environment, where the person
who wrote code implicitly “owns” it and can be expected to take care of it in the beginning of its lifetime, once
a pull request is merged into an open source project, it immediately becomes the collective responsibility of all
maintainers on the project. When we merge code, we are saying that we, the maintainers, are able to review
subsequent changes and make a bugfix to the code. This naturally leads to a higher standard of contribution.

18.4 Common Mistakes To Avoid

• Did you add tests? (Or if the change is hard to test, did you describe how you tested your change?)

– We have a few motivations for why we ask for tests:

1. to help us tell if we break it later

2. to help us tell if the patch is correct in the first place (yes, we did review it, but as Knuth says, “beware
of the following code, for I have not run it, merely proven it correct”)

– When is it OK not to add a test? Sometimes a change can’t be conveniently tested, or the change is so
obviously correct (and unlikely to be broken) that it’s OK not to test it. On the contrary, if a change is
seems likely (or is known to be likely) to be accidentally broken, it’s important to put in the time to work
out a testing strategy.

• Is your PR too long? It’s easier for us to review and merge small PRs. Difficulty of reviewing a PR scales
nonlinearly with its size. You can try to split it up if possible, else it helps if there is a complete description of
the contents of the PR: it’s easier to review code if we know what’s inside!

• Comments for subtle things? In cases where behavior of your code is nuanced, please include extra comments
and documentation to allow us to better understand the intention of your code.

• Did you add a hack? Sometimes a hack is the right answer. But usually we will have to discuss it.

• Do you want to touch a very core component? In order to prevent major regressions, pull requests that
touch core components receive extra scrutiny. Make sure you’ve discussed your changes with the team before
undertaking major changes.

• Want to add a new feature? If you want to add new features, comment your intention on the related issue. Our
team tries to comment on and provide feedback to the community. It’s better to have an open discussion with
the team and the rest of the community prior to building new features. This helps us stay aware of what you’re
working on and increases the chance that it’ll be merged.

• Did you touch unrelated code to the PR? To aid in code review, please only include files in your pull request
that are directly related to your changes.

92 Chapter 18. Asteroid High-Level Contribution Guide

asteroid Documentation, Release 0.4.0alpha

18.5 Frequently asked questions

• How can I contribute as a reviewer? There is lots of value if community developer reproduce issues, try out
new functionality, or otherwise help us identify or troubleshoot issues. Commenting on tasks or pull requests
with your environment details is helpful and appreciated.

• CI tests failed, what does it mean? Maybe you need to merge with master or rebase with latest changes.
Pushing your changes should re-trigger CI tests. If the tests persist, you’ll want to trace through the error
messages and resolve the related issues.

18.6 Attribution

This Contribution Guide is adapted from PyTorch’s Contribution Guide available here.

18.5. Frequently asked questions 93

https://github.com/pytorch/pytorch/blob/master/docs/source/community/contribution_guide.rst

asteroid Documentation, Release 0.4.0alpha

94 Chapter 18. Asteroid High-Level Contribution Guide

CHAPTER 19

How to contribute

The general way to contribute to Asteroid is to fork the main repository on GitHub:

1. Fork the main repo and git clone it.

2. Make your changes, test them, commit them and push them to your fork.

3. You can open a pull request on GitHub when you’re satisfied.

Things don’t need to be perfect for PRs to be opened.

If you made changes to the source code, you’ll want to try them out without installing asteroid everytime you change
something. To do that, install asteroid in develop mode either with pip pip install -e .[tests] or with
python python setup.py develop.

To avoid formatting roundtrips in PRs, Asteroid relies on ‘‘black‘ <https://github.com/psf/black>‘_ and ‘‘pre-commit-
hooks‘ <https://github.com/pre-commit/pre-commit-hooks>‘_ to handle formatting for us. You’ll need to install
requirements.txt and install git hooks with pre-commit install.

Here is a summary:

Install
git clone your_fork_url
cd asteroid
pip install -r requirements.txt
pip install -e .
pre-commit install # To run black before commit

Make your changes
Test them locally
Commit your changes
Push your changes
Open a PR!

95

https://github.com/mpariente/asteroid
https://github.com/psf/black
https://github.com/pre-commit/pre-commit-hooks

asteroid Documentation, Release 0.4.0alpha

19.1 Source code contributions

All contributions to the source code of asteroid should be documented and unit-tested. See here to run the tests
with coverage reports. Docstrings follow the Google format, have a look at other docstrings in the codebase for
examples. Examples in docstrings can be bery useful, don’t hesitate to add some!

19.2 Writing new recipes.

Most new recipes should follow the standard format that is described here. We are not dogmatic about it, but another
organization should be explained and motivated. We welcome any recipe on standard or new datasets, with standard
or new architectures. You can even link a paper submission with a PR number if you’d like!

19.3 Improving the docs.

If you found a typo, think something could be more explicit etc. . . Improving the documentation is always welcome.
The instructions to install dependencies and build the docs can be found here. Docstrings follow the Google format,
have a look at other docstrings in the codebase for examples.

19.4 Coding style

We use pre-commit hooks to format the code using black. The code is checked for black- and flake8- compli-
ance on every commit with GitHub actions. Remember, continuous integration is not here to be all green, be to help
us see where to improve !

If you have any question, open an issue or join the slack, we’ll be happy to help you.

96 Chapter 19. How to contribute

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
../.pre-commit-config.yaml
https://github.com/mpariente/asteroid/issues/new
https://join.slack.com/t/asteroid-dev/shared_invite/zt-cn9y85t3-QNHXKD1Et7qoyzu1Ji5bcA

CHAPTER 20

Indices and tables

• genindex

• modindex

• search

97

asteroid Documentation, Release 0.4.0alpha

98 Chapter 20. Indices and tables

Python Module Index

a
asteroid.filterbanks.analytic_free_fb,

28
asteroid.filterbanks.free_fb, 27
asteroid.filterbanks.griffin_lim, 30
asteroid.filterbanks.multiphase_gammatone_fb,

30
asteroid.filterbanks.param_sinc_fb, 28
asteroid.filterbanks.stft_fb, 29
asteroid.filterbanks.transforms, 32
asteroid.losses, 57
asteroid.losses.pit_wrapper, 63
asteroid.masknn.convolutional, 37
asteroid.masknn.norms, 46
asteroid.masknn.recurrent, 42
asteroid.models.base_models, 49
asteroid.models.conv_tasnet, 51
asteroid.models.dprnn_tasnet, 52
asteroid.models.publisher, 54
asteroid.models.zenodo, 53
asteroid.utils.generic_utils, 85
asteroid.utils.hub_utils, 85
asteroid.utils.parser_utils, 83
asteroid.utils.torch_utils, 84

99

asteroid Documentation, Release 0.4.0alpha

100 Python Module Index

Index

A
AnalyticFreeFB (class in aster-

oid.filterbanks.analytic_free_fb), 28
angle() (in module asteroid.filterbanks.transforms), 32
apply_complex_mask() (in module aster-

oid.filterbanks.transforms), 32
apply_mag_mask() (in module aster-

oid.filterbanks.transforms), 33
apply_real_mask() (in module aster-

oid.filterbanks.transforms), 33
are_models_equal() (in module aster-

oid.utils.torch_utils), 84
asteroid.filterbanks.analytic_free_fb

(module), 28
asteroid.filterbanks.free_fb (module), 27
asteroid.filterbanks.griffin_lim (mod-

ule), 30
asteroid.filterbanks.multiphase_gammatone_fb

(module), 30
asteroid.filterbanks.param_sinc_fb (mod-

ule), 28
asteroid.filterbanks.stft_fb (module), 29
asteroid.filterbanks.transforms (module),

32
asteroid.losses (module), 57
asteroid.losses.pit_wrapper (module), 63
asteroid.masknn.convolutional (module), 37
asteroid.masknn.norms (module), 46
asteroid.masknn.recurrent (module), 42
asteroid.models.base_models (module), 49
asteroid.models.conv_tasnet (module), 51
asteroid.models.dprnn_tasnet (module), 52
asteroid.models.publisher (module), 54
asteroid.models.zenodo (module), 53
asteroid.utils.generic_utils (module), 85
asteroid.utils.hub_utils (module), 85
asteroid.utils.parser_utils (module), 83
asteroid.utils.torch_utils (module), 84
average_arrays_in_dic() (in module aster-

oid.utils.generic_utils), 85

B
bark_freq_equalization() (aster-

oid.losses.SingleSrcPMSQE method), 60
BaseEncoderMaskerDecoder (class in aster-

oid.models.base_models), 49
BaseModel (class in asteroid.models.base_models), 50
BaseTasNet (in module asteroid.models.base_models),

51
BatchNorm (class in asteroid.masknn.norms), 46
best_perm_from_perm_avg_loss() (aster-

oid.losses.pit_wrapper.PITLossWrapper static
method), 64

best_perm_from_perm_avg_loss() (aster-
oid.losses.PITLossWrapper static method),
58

bN (in module asteroid.masknn.norms), 47

C
cached_download() (in module aster-

oid.utils.hub_utils), 85
cgLN (in module asteroid.masknn.norms), 47
change_metadata_in_deposition() (aster-

oid.models.zenodo.Zenodo method), 53
ChanLN (class in asteroid.masknn.norms), 46
check_complex() (in module aster-

oid.filterbanks.transforms), 33
check_torchaudio_complex() (in module aster-

oid.filterbanks.transforms), 33
cLN (in module asteroid.masknn.norms), 47
Conv1DBlock (class in aster-

oid.masknn.convolutional), 37
ConvTasNet (class in asteroid.models.conv_tasnet), 51
create_new_deposition() (aster-

oid.models.zenodo.Zenodo method), 54
CumLN (class in asteroid.masknn.norms), 46

D
DCCRMaskNet (class in asteroid.masknn.recurrent), 42

101

asteroid Documentation, Release 0.4.0alpha

DCCRMaskNetRNN (class in aster-
oid.masknn.recurrent), 42

DCUMaskNet (class in asteroid.masknn.convolutional),
38

DCUNetComplexDecoderBlock (class in aster-
oid.masknn.convolutional), 38

DCUNetComplexEncoderBlock (class in aster-
oid.masknn.convolutional), 38

Decoder (class in asteroid.filterbanks), 26
deep_clustering_loss() (in module aster-

oid.losses), 62
deep_clustering_loss() (in module aster-

oid.losses.cluster), 72
display_one_level_dict() (in module aster-

oid.models.publisher), 54
DPRNN (class in asteroid.masknn.recurrent), 43
DPRNNBlock (class in asteroid.masknn.recurrent), 44
DPRNNTasNet (class in asteroid.models.dprnn_tasnet),

52
DualPathProcessing (class in asteroid.dsp), 79

E
ebased_vad() (in module aster-

oid.filterbanks.transforms), 33
Encoder (class in asteroid.filterbanks), 25
erb_scale_2_freq_hz() (in module aster-

oid.filterbanks.multiphase_gammatone_fb),
30

F
FeatsGlobLN (class in asteroid.masknn.norms), 47
fgLN (in module asteroid.masknn.norms), 47
file_separate() (aster-

oid.models.base_models.BaseModel method),
50

Filterbank (class in asteroid.filterbanks), 25
filters (asteroid.filterbanks.analytic_free_fb.AnalyticFreeFB

attribute), 28
filters (asteroid.filterbanks.Filterbank attribute), 25
filters (asteroid.filterbanks.free_fb.FreeFB attribute),

27
filters (asteroid.filterbanks.multiphase_gammatone_fb.MultiphaseGammatoneFB

attribute), 30
filters (asteroid.filterbanks.param_sinc_fb.ParamSincFB

attribute), 29
filters (asteroid.filterbanks.stft_fb.STFTFB at-

tribute), 29
find_best_perm() (aster-

oid.losses.pit_wrapper.PITLossWrapper
static method), 64

find_best_perm() (aster-
oid.losses.PITLossWrapper static method),
58

flatten_dict() (in module aster-
oid.utils.generic_utils), 85

fold() (asteroid.dsp.DualPathProcessing method), 80
forward() (asteroid.dsp.LambdaOverlapAdd method),

79
forward() (asteroid.filterbanks.Decoder method), 26
forward() (asteroid.filterbanks.Encoder method), 26
forward() (asteroid.losses.pit_wrapper.PITLossWrapper

method), 65
forward() (asteroid.losses.PITLossWrapper method),

59
forward() (asteroid.losses.SingleSrcPMSQE method),

60
forward() (asteroid.masknn.convolutional.Conv1DBlock

method), 37
forward() (asteroid.masknn.convolutional.TDConvNet

method), 40
forward() (asteroid.masknn.convolutional.TDConvNetpp

method), 41
forward() (asteroid.masknn.convolutional.UBlock

method), 42
forward() (asteroid.masknn.convolutional.UConvBlock

method), 42
forward() (asteroid.masknn.norms.ChanLN method),

46
forward() (asteroid.masknn.norms.CumLN method),

46
forward() (asteroid.masknn.norms.FeatsGlobLN

method), 47
forward() (asteroid.masknn.norms.GlobLN method),

47
forward() (asteroid.masknn.recurrent.DCCRMaskNetRNN

method), 43
forward() (asteroid.masknn.recurrent.DPRNN

method), 44
forward() (asteroid.masknn.recurrent.DPRNNBlock

method), 44
forward() (asteroid.masknn.recurrent.SingleRNN

method), 45
forward() (asteroid.masknn.recurrent.StackedResidualBiRNN

method), 46
forward() (asteroid.masknn.recurrent.StackedResidualRNN

method), 46
forward() (asteroid.models.base_models.BaseEncoderMaskerDecoder

method), 49
FreeFB (class in asteroid.filterbanks.free_fb), 27
freq_hz_2_erb_scale() (in module aster-

oid.filterbanks.multiphase_gammatone_fb),
30

from_mag_and_phase() (in module aster-
oid.filterbanks.transforms), 34

from_numpy() (in module aster-
oid.filterbanks.transforms), 34

from_pretrained() (aster-

102 Index

asteroid Documentation, Release 0.4.0alpha

oid.models.base_models.BaseModel class
method), 50

from_torchaudio() (in module aster-
oid.filterbanks.transforms), 34

G
gammatone_impulse_response() (in module as-

teroid.filterbanks.multiphase_gammatone_fb),
30

get (class in asteroid.filterbanks), 27
get() (in module asteroid.masknn.norms), 47
get_complex() (in module asteroid.masknn.norms),

47
get_config() (asteroid.filterbanks.Filterbank

method), 25
get_config() (aster-

oid.filterbanks.param_sinc_fb.ParamSincFB
method), 29

get_correction_factor() (aster-
oid.losses.SingleSrcPMSQE static method),
61

get_deposition() (asteroid.models.zenodo.Zenodo
method), 54

get_metrics() (in module asteroid.metrics), 73
get_model_args() (aster-

oid.models.base_models.BaseEncoderMaskerDecoder
method), 49

get_pw_losses() (aster-
oid.losses.pit_wrapper.PITLossWrapper
static method), 65

get_pw_losses() (asteroid.losses.PITLossWrapper
static method), 59

get_state_dict() (aster-
oid.models.base_models.BaseModel method),
50

get_username() (in module aster-
oid.models.publisher), 54

get_wav_random_start_stop() (in module as-
teroid.utils.generic_utils), 86

gLN (in module asteroid.masknn.norms), 47
GlobLN (class in asteroid.masknn.norms), 47
griffin_lim() (in module aster-

oid.filterbanks.griffin_lim), 30

H
has_arg() (in module asteroid.utils.generic_utils), 86

I
inter_process() (asteroid.dsp.DualPathProcessing

static method), 80
intra_process() (asteroid.dsp.DualPathProcessing

static method), 80
is_asteroid_complex() (in module aster-

oid.filterbanks.transforms), 34

is_torchaudio_complex() (in module aster-
oid.filterbanks.transforms), 34

isfloat() (in module asteroid.utils.parser_utils), 83
isint() (in module asteroid.utils.parser_utils), 83

L
LambdaOverlapAdd (class in asteroid.dsp), 79
load_state_dict_in() (in module aster-

oid.utils.torch_utils), 84
LSTMMasker (class in asteroid.masknn.recurrent), 44

M
make_enc_dec (class in asteroid.filterbanks), 26
make_license_notice() (in module aster-

oid.models.publisher), 54
make_metadata_from_model() (in module aster-

oid.models.publisher), 55
misi() (in module asteroid.filterbanks.griffin_lim), 31
mixture_consistency() (in module asteroid.dsp),

81
mul_c() (in module asteroid.filterbanks.transforms), 35
MultiphaseGammatoneFB (class in aster-

oid.filterbanks.multiphase_gammatone_fb),
30

MultiSrcMSE() (in module asteroid.losses.mse), 67
MultiSrcNegSDR() (in module asteroid.losses.sdr),

69

N
NegSTOILoss() (in module asteroid.losses.stoi), 70
normalize_filters() (in module aster-

oid.filterbanks.multiphase_gammatone_fb),
30

numpy_separate() (aster-
oid.models.base_models.BaseModel method),
50

O
ola_forward() (asteroid.dsp.LambdaOverlapAdd

method), 79

P
pad_x_to_y() (in module asteroid.utils.torch_utils),

84
PairwiseMSE() (in module asteroid.losses.mse), 66
PairwiseNegSDR (class in asteroid.losses), 62
PairwiseNegSDR() (in module asteroid.losses.sdr),

67
ParamSincFB (class in aster-

oid.filterbanks.param_sinc_fb), 28
parse_args_as_dict() (in module aster-

oid.utils.parser_utils), 83
perfect_synthesis_window() (in module aster-

oid.filterbanks.stft_fb), 29

Index 103

asteroid Documentation, Release 0.4.0alpha

pinv_of() (asteroid.filterbanks.Decoder class
method), 26

pinv_of() (asteroid.filterbanks.Encoder class
method), 26

PITLossWrapper (class in asteroid.losses), 57
PITLossWrapper (class in aster-

oid.losses.pit_wrapper), 63
postprocess_decoded() (aster-

oid.models.base_models.BaseEncoderMaskerDecoder
method), 49

postprocess_encoded() (aster-
oid.models.base_models.BaseEncoderMaskerDecoder
method), 49

postprocess_masked() (aster-
oid.models.base_models.BaseEncoderMaskerDecoder
method), 50

postprocess_masks() (aster-
oid.models.base_models.BaseEncoderMaskerDecoder
method), 50

prepare_parser_from_dict() (in module aster-
oid.utils.parser_utils), 83

publish_deposition() (aster-
oid.models.zenodo.Zenodo method), 54

R
register_norm() (in module aster-

oid.masknn.norms), 47
remove_all_depositions() (aster-

oid.models.zenodo.Zenodo method), 54
remove_deposition() (aster-

oid.models.zenodo.Zenodo method), 54
reorder_source() (aster-

oid.losses.pit_wrapper.PITLossWrapper
static method), 65

reorder_source() (aster-
oid.losses.PITLossWrapper static method),
59

S
save_publishable() (in module aster-

oid.models.publisher), 55
separate() (asteroid.models.base_models.BaseModel

method), 50
serialize() (aster-

oid.models.base_models.BaseModel method),
51

SingleRNN (class in asteroid.masknn.recurrent), 45
SingleSrcMSE() (in module asteroid.losses.mse), 66
SingleSrcMultiScaleSpectral (class in aster-

oid.losses), 61
SingleSrcMultiScaleSpectral() (in module

asteroid.losses.multi_scale_spectral), 71
SingleSrcNegSDR() (in module asteroid.losses.sdr),

68

SingleSrcNegSTOI (in module asteroid.losses), 61
SingleSrcPMSQE (class in asteroid.losses), 59
SingleSrcPMSQE() (in module aster-

oid.losses.pmsqe), 69
StackedResidualBiRNN (class in aster-

oid.masknn.recurrent), 45
StackedResidualRNN (class in aster-

oid.masknn.recurrent), 46
STFTFB (class in asteroid.filterbanks.stft_fb), 29
str2bool() (in module asteroid.utils.parser_utils), 84
str2bool_arg() (in module aster-

oid.utils.parser_utils), 84
str_int_float() (in module aster-

oid.utils.parser_utils), 84
SuDORMRF (class in asteroid.masknn.convolutional), 39
SuDORMRFImproved (class in aster-

oid.masknn.convolutional), 39

T
take_mag() (in module aster-

oid.filterbanks.transforms), 35
TDConvNet (class in asteroid.masknn.convolutional),

40
TDConvNetpp (class in aster-

oid.masknn.convolutional), 40
tensors_to_device() (in module aster-

oid.utils.torch_utils), 85
to_cuda() (in module asteroid.utils.torch_utils), 85
to_numpy() (in module aster-

oid.filterbanks.transforms), 35
to_torchaudio() (in module aster-

oid.filterbanks.transforms), 35
torch_separate() (aster-

oid.models.base_models.BaseModel method),
51

two_level_dict_html() (in module aster-
oid.models.publisher), 55

U
UBlock (class in asteroid.masknn.convolutional), 41
UConvBlock (class in asteroid.masknn.convolutional),

42
unet_decoder_args() (in module aster-

oid.utils.generic_utils), 86
unfold() (asteroid.dsp.DualPathProcessing method),

81
upload_new_file_to_deposition() (aster-

oid.models.zenodo.Zenodo method), 54
upload_publishable() (in module aster-

oid.models.publisher), 55
url_to_filename() (in module aster-

oid.utils.hub_utils), 85

104 Index

asteroid Documentation, Release 0.4.0alpha

Z
Zenodo (class in asteroid.models.zenodo), 53
zenodo_upload() (in module aster-

oid.models.publisher), 56

Index 105

	What is Asteroid?
	Installation
	What is a recipe?
	Datasets and tasks
	Training and Evaluation
	Pretrained models
	FAQ
	PyTorch Datasets
	Filterbank API
	DNN building blocks
	Models
	Losses & Metrics
	Lightning Wrapper
	Optimizers & Schedulers
	DSP Modules
	Utils
	CLI
	Asteroid High-Level Contribution Guide
	How to contribute
	Indices and tables
	Python Module Index
	Index

