asteroid Documentation
Release 0.4.0alpha

Manuel Pariente et al.

Oct 07, 2020

Start here

10

11

12

13

14

15

16

17

18

19

20

What is Asteroid?
Installation

What is a recipe?
Datasets and tasks
Training and Evaluation
Pretrained models

FAQ

PyTorch Datasets
Filterbank API

DNN building blocks
Models

Losses & Metrics
Lightning Wrapper
Optimizers & Schedulers
DSP Modules

Utils

CLI

Asteroid High-Level Contribution Guide
How to contribute

Indices and tables

11

17

19

21

23

25

37

49

57

75

77

79

83

87

89

95

97

Python Module Index 99

Index 101

asteroid Documentation, Release 0.4.0alpha

Asteroid is a Pytorch-based audio source separation toolkit that enables fast experimentation on common datasets. It
comes with a source code that supports a large range of datasets and architectures, and a set of recipes to reproduce
some important papers.

Start here 1

asteroid Documentation, Release 0.4.0alpha

2 Start here

CHAPTER 1

What is Asteroid?

Asteroid is a PyTorch-based audio source separation toolkit.
The main goals of Asteroid are:
» Gather a wider community around audio source separation by lowering the barriers to entry.
¢ Promote reproducibility by replicating important research papers.
¢ Automatize most engineering and make way for research.
» Simplify model sharing to reduce compute costs and carbon footprint.
So, how do we do that? We aim to provide
* PyTorch Dataset for common datasets.
» Ready-to-use state-of-the art source separation architectures in native PyTorch.
* Configurable recipes from data preparation to evaluation.

* Pretrained models for a wide variety of tasks and architectures.

1.1 Who is it for?

Asteroid has several target usage:
 Use asteroid in your own code, as a package.
* Use available recipes to build your own separation model.
» Use pretrained models to process your files.

* Hit the ground running with your research ideas!

asteroid Documentation, Release 0.4.0alpha

4 Chapter 1. What is Asteroid?

CHAPTER 2

Installation

By following the instructions below, first install PyTorch and then Asteroid (using either pip/dev install). We recom-
mend the development installation for users likely to modify the source code.

2.1 CUDA and PyTorch

Asteroid is based on PyTorch. To run Asteroid on GPU, you will need a CUDA-enabled PyTorch installation. Visit
this site for the instructions: https://pytorch.org/get-started/locally/.

2.2 Pip

Asteroid is regularly updated on PyPI, install the latest stable version with:

’pip install asteroid

2.3 Development installation

For development installation, you can fork/clone the GitHub repo and locally install it with pip:

git clone https://github.com/mpariente/asteroid
cd asteroid
pip install -e .

This is an editable install (e flag), it means that source code changes (or branch switching) are automatically taken
into account when importing asteroid.

https://pytorch.org/get-started/locally/

asteroid Documentation, Release 0.4.0alpha

6 Chapter 2. Installation

CHAPTER 3

What is a recipe?

A recipe is a set of scripts that use Asteroid to build a source separation system. Each directory corresponds to a
dataset and each subdirectory corresponds to a system build on this dataset. You can start by reading this recipe to get
familiar with them.

3.1 How is it organized?

Most recipes are organized as follows. When you clone the repo, data, exp and 1ogs won’t be there yet, it’s normal.

— data/

— exp/

—— logs/

— local/
convert_sphere2wav.sh
prepare_data.sh
conf.yml
preprocess_wham.py

— utils/

|: parse_options.sh
prepare_python_env.sh

— run.sh

— train.py

— model.py

— eval.py

A small graph might help.

readmes/../docs/source/_static/images/code_example_croped.png

../docs/source/_static/images/code_example_croped.png

asteroid Documentation, Release 0.4.0alpha

3.2 How does it work?

Let’s try to summarize how recipes work :

e There is a master file, run. sh, from which all the steps are ran (install dependencies, download data, create
dataset, train a model evaluate it and so on..). This recipe style is borrowed from Kaldi and ESPnet.

You usually have to change some variables in the top of the file (comments are around it to help you) like
data directory, python path etc..

This script is controlled by several arguments. Among them, stage controls from where do you start the
script. You already generated the data? No need to do it again, set stage=3!

All steps until training are dataset-specific and the corresponding scripts are stored in . /local

* The training and evaluation scripts are then called from run. sh

There is a script, model . py, where the model should be defined along with the System subclass used
for training (if needed).

‘We wrap the model definition in one function (make_model_and_optimizer). The function receives
a dictionary which is also saved in the experiment folder. This make checkpoint restoring easy without
any additional constraints.

We also write a function to load the best model (Load_best_model) after training. This is useful to
load the model several time (evaluation, separation of new examples...).

e The arguments flow through bash/python/yaml in a specific way, which was designed by us and suits our use-
cases until now:

The very first step is the local/conf . yml file where is a hierarchical configuration file,

On the python side : This file is parsed as a dictionary of dictionary in t raining. py. From this dict, we
create an argument parser which can accept all the second-level keys from the dictionary (so second-level
keys should be unique) as arguments and has the default values from the conf . ym1 file.

On the bash side: we also parse arguments from the command line (using utils/parse_options.
sh). The arguments above the line . utils/parse_options.sh can be parsed, the rest are fixed.
Most arguments will be passed to the training script. Others control the data preparation, GPU usage etc. ..

In light of all this the config file should have sensible default values that shouldn’t be modified by hand
much. The quickly configurable part of the recipe are added to run. sh (you want to experiment with
the batch size, add an argument in and pass it to python. If you want it fixed, no need to put it in bash,
the conf.yml file keeps it for you.) This makes it possible to directly identify the important parts of the
experiment, without reading lots of lines of argparser or bash arguments.

¢ Some more notes :

After the first execution, you can go and change stage in run. sh to avoid redoing all the steps every-
time.

To use GPUs for training, run run.sh —--id 0, 1 where 0 and 1 are the GPUs you want to use, training
should automatically take advantage of both GPUs.

By default, a random id is generated for each run, you can also add a tag to name the experiments
how you want. For example run.sh --tag with_cool_loss will save all results to exp/
train_{arch_name}_with_cool_loss. You’ll also find the corresponding log file in 1logs/
train_{arch_name}_with_cool_loss.logq.

Model loading methods suppose that the model architecture is the same as when training was performed.
Be careful when you change it.

Chapter 3. What is a recipe?

https://github.com/kaldi-asr/kaldi
https://github.com/espnet/espnet

asteroid Documentation, Release 0.4.0alpha

Again, you have a doubt, a question, a suggestion or a request, open an issue or join the slack, we’ll be happy to help
you.

3.2. How does it work? 9

https://github.com/mpariente/asteroid/issues/new
https://join.slack.com/t/asteroid-dev/shared_invite/zt-cn9y85t3-QNHXKD1Et7qoyzu1Ji5bcA

asteroid Documentation, Release 0.4.0alpha

10 Chapter 3. What is a recipe?

CHAPTER 4

Datasets and tasks

The following is a list of supported datasets, sorted by task. If you’re more interested in the corresponding PyTorch
Dataset, see this page

4.1 Speech separation

4.1.1 wsj0-2mix dataset

wsj0-2mix is a single channel speech separation dataset base on WSJ0. Three speaker extension (wsj0-3mix) is also
considered here.

Reference

@article{Hershey 2016,
title={Deep clustering: Discriminative embeddings for segmentation and separation},
ISBN={9781479999880},
url={http://dx.doi.org/10.1109/ICASSP.2016.7471631},
DOI={10.1109/icassp.2016.7471631},
journal={2016 IEEE International Conference on Acoustics, Speech and Signal_
—Processing (ICASSP)},
publisher={IEEE},
author={Hershey, John R. and Chen, Zhuo and Le Roux, Jonathan and Watanabe, Shinji}

sy

year={2016},

4.1.2 WHAM dataset

WHAM! is a noisy single-channel speech separation dataset based on WSJO. It is a noisy extension of wsj0-2mix.
More info here.

References

11

http://wham.whisper.ai/

asteroid Documentation, Release 0.4.0alpha

@inproceedings {WHAMWichern2019,
author={Gordon Wichern and Joe Antognini and Michael Flynn and Licheng Richard Zhu,
—and Emmett McQuinn and Dwight Crow and Ethan Manilow and Jonathan Le Roux},
title={{WHAM!: extending speech separation to noisy environments}},
year=2019,
booktitle={Proc. Interspeech},
pages={1368--1372},
doi={10.21437/Interspeech.2019-2821},
url={http://dx.doi.org/10.21437/Interspeech.2019-2821}

4.1.3 WHAMR dataset

WHAMR! is a noisy and reverberant single-channel speech separation dataset based on WSJO. It is a reverberant
extension of WHAM!.

Note that WHAMR! can synthesize binaural recordings, but we only consider the single channel for now.

More info here. References

@misc{maciejewski2019whamr,

title={WHAMR!: Noisy and Reverberant Single-Channel Speech Separation},

author={Matthew Maciejewski and Gordon Wichern and Emmett McQuinn and Jonathan Le_
—Roux},

year={2019},

eprint={1910.10279},

archivePrefix={arXiv},

primaryClass={cs.SD}

4.1.4 LibriMix dataset

The LibriMix dataset is an open source dataset derived from LibriSpeech dataset. It’s meant as an alternative and
complement to WHAM.

More info here.

References

@misc{cosentino2020librimix,

title={LibriMix: An Open-Source Dataset for Generalizable Speech Separation},

author={Joris Cosentino and Manuel Pariente and Samuele Cornell and Antoine_
—Deleforge and Emmanuel Vincent},

year={2020},

eprint={2005.11262},

archivePrefix={arXiv},

primaryClass={eess.AS}

4.1.5 Kinect-WSJ dataset

Kinect-WSJ is a reverberated, noisy version of the WSJ0-2MIX dataset. Microphones are placed on a linear array with
spacing between the devices resembling that of Microsoft Kinect ™, the device used to record the CHiME-5 dataset.

12 Chapter 4. Datasets and tasks

http://wham.whisper.ai/
https://github.com/JorisCos/LibriMix

asteroid Documentation, Release 0.4.0alpha

This was done so that we could use the real ambient noise captured as part of CHiME-5 dataset. The room impulse
responses (RIR) were simulated for a sampling rate of 16,000 Hz.

Requirements

e wsj_path : Path to precomputed wsj-2mix dataset. Should contain the folder 2speakers/wav16k/. If you don’t
have wsj_mix dataset, please create it using the scripts in egs/wsj0_mix

* chime_path : Path to chime-5 dataset. Should contain the folders train, dev and eval
e dihard_path : Path to dihard labels. Should contain * . 1ab files for the train and dev set

References Original repo

@inproceedings{sivasankaran2020,
booktitle = {2020 28th {{European Signal Processing Conference}} ({{EUSIPCO}})},
title={Analyzing the impact of speaker localization errors on speech separation for
—automatic speech recognition},
author={Sunit Sivasankaran and Emmanuel Vincent and Dominique Fohr},
year={2021},
month = Jan,

}

4.1.6 SMS_WSJ dataset

SMS_WSIJ (stands for Spatialized Multi-Speaker Wall Street Journal) is a multichannel source separation dataset,
based on WSJO and WSJ1.

All the information regarding the dataset can be found in this repo.

References If you use this dataset, please cite the corresponding paper as follows :

@Article{SmsWsjl9,

author = {Drude, Lukas and Heitkaemper, Jens and Boeddeker, Christoph and Haeb-
—Umbach, Reinhold},

title = {{SMS-WSJ}: Database, performance measures, and baseline recipe for,
—multi-channel source separation and recognition},

journal = {arXiv preprint arXiv:1910.13934},

year = {2019},

}

4.2 Speech enhancement

4.2.1 DNS Challenge’s dataset

The Deep Noise Suppression (DNS) Challenge is a single-channel speech enhancement challenge organized by Mi-
crosoft, with a focus on real-time applications. More info can be found on the official page.

References
 The challenge paper, here. .. code-block:: BibTex

@misc{DNSChallenge2020, title={ The INTERSPEECH 2020 Deep Noise Suppression Challenge:
Datasets, Subjective Speech Quality and Testing Framework}, author={Chandan K. A. Reddy and
Ebrahim Beyrami and Harishchandra Dubey and Vishak Gopal and Roger Cheng and Ross Cutler
and Sergiy Matusevych and Robert Aichner and Ashkan Aazami and Sebastian Braun and Puneet
Rana and Sriram Srinivasan and Johannes Gehrke}, year={2020}, eprint={2001.08662}, }

4.2. Speech enhancement 13

https://github.com/sunits/Reverberated_WSJ_2MIX/
https://github.com/fgnt/sms_wsj
https://dns-challenge.azurewebsites.net/
https://arxiv.org/abs/2001.08662

asteroid Documentation, Release 0.4.0alpha

* The baseline paper, here. .. code-block:: BibTex

@misc{xia2020weighted, title={ Weighted Speech Distortion Losses for Neural-network-based
Real-time Speech Enhancement}, author={Yangyang Xia and Sebastian Braun and Chandan
K. A. Reddy and Harishchandra Dubey and Ross Cutler and Ivan Tashev}, year={2020},
eprint={2001.10601}, }

4.3 Music source separation

4.3.1 MUSDB18 Dataset

The musdb18 is a dataset of 150 full lengths music tracks (~10h duration) of different genres along with their isolated
drums, bass, vocals and others stems.

More info here.

4.4 Environmental sound separation

4.4.1 FUSS dataset

The Free Universal Sound Separation (FUSS) dataset comprises audio mixtures of arbitrary sounds with source refer-
ences for use in experiments on arbitrary sound separation.

All the information related to this dataset can be found in this repo.

References If you use this dataset, please cite the corresponding paper as follows:

@Article{Wisdom2020,

author = {Scott Wisdom and Hakan Erdogan and Daniel P. W. Ellis and Romain_,
—Serizel and Nicolas Turpault and Eduardo Fonseca and Justin Salamon and Prem
—Seetharaman and John R. Hershey},

title = {What's All the FUSS About Free Universal Sound Separation Data?},
journal = {in preparation},
year = {2020},

}

4.5 Audio-visual source separation

4.5.1 AVSpeech dataset

AVSpeech is an audio-visual speech separation dataset which was introduced by Google in this article Looking to
Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech Separation.

More info here.

References

Qarticle{Ephrat_2018,
title={Looking to listen at the cocktail party},
volume={37},
url={http://dx.doi.org/10.1145/3197517.3201357},

(continues on next page)

14 Chapter 4. Datasets and tasks

https://arxiv.org/abs/2001.10601
https://sigsep.github.io/datasets/musdb.html
https://github.com/google-research/sound-separation/tree/master/datasets/fuss
https://arxiv.org/abs/1804.03619
https://arxiv.org/abs/1804.03619
https://looking-to-listen.github.io/avspeech/download.html

asteroid Documentation, Release 0.4.0alpha

(continued from previous page)

DOI={10.1145/3197517.3201357},

journal={ACM Transactions on Graphics},

publisher={Association for Computing Machinery

author={Ephrat,
— Kevin and Hassidim,

year={2018},

pages={1-11}

Ariel and Mosseri,
Avinatan and Freeman,

Inbar and Lang,
William T.

Oran and Dekel,

(ACM) },

Tali and Wilson,

and Rubinstein, Michael},

4.6 Speaker extraction

4.6. Speaker extraction

15

asteroid Documentation, Release 0.4.0alpha

16 Chapter 4. Datasets and tasks

CHAPTER B

Training and Evaluation

Training and evaluation are the two essential parts of the recipes. For training, we offer a thin wrapper around Py-
TorchLightning that seamlessly enables distributed training, experiment logging and more, without sacrificing flexi-
bility. For evaluation we released pb_bss_eval on PyPI, which is the evaluation part of pb_bss. All the credit goes
to the original authors from the Paderborn University.

5.1 Training with PyTorchLightning

First, have a look here for an overview of PyTorchLightning. As you saw, the LightningModule is a central class
of PyTorchLightning where a large part of the research-related logic lives. Instead of subclassing it everytime, we use
System, a thin wrapper that separately gathers the essential parts of every deep learning project:

1. A model
2. Optimizer
3. Loss function

4. Train/val data

class System(pl.LightningModule) :
def __ _init__ (self, model, optimizer, loss_func, train_loader, val_loader):

def common_step(self, batch):
" common_step 1is the method that'll be called at both train/val time. """
inputs, targets = batch
est_targets = self (inputs)
loss = self.loss_func(est_targets, targets)
return loss

Only overwriting common_ step will often be enough to obtain a desired behavior, while avoiding boilerplate code.
Then, we can use the native PyTorchLightning Trainer to train the models.

17

https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/fgnt/pb_bss
https://pytorch-lightning.readthedocs.io/en/latest/introduction_guide.html

asteroid Documentation, Release 0.4.0alpha

5.2 Evaluation

Asteroid’s function compute_metrics thatcalls pb_bss_eval is used to compute the following common source
separation metrics:

« SDR/SIR/SAR
« STOI

« PESQ

« SI-SDR

18 Chapter 5. Training and Evaluation

CHAPTER O

Pretrained models

Asteroid provides pretrained models through the Asteroid community in Zenodo. Have a look at the Zenodo page to
choose which model you want to use.

Enjoy having pretrained models? Please share your models if you train some, we made it simple with the
asteroid-upload CLI, check the next sections.

6.1 Using them

Loading a pretrained model is super simple!

from asteroid.models import ConvTasNet
model = ConvTasNet.from pretrained('mpariente/ConvTasNet WHAM!_ sepclean')

Use the search page if you want to narrow your search.

You can also load it with Hub

from torch import hub
model = hub.load('mpariente/asteroid', 'conv_tasnet', 'mpariente/ConvTasNet_ WHAM!__
—sepclean')

6.2 Model caching

When using a from_pretrained method, the model is downloaded and cached. The cache directory is either the
value in the SASTEROID_CACHE environment variable, or ~/ .cache/torch/asteroid.

19

https://zenodo.org/communities/asteroid-models
https://zenodo.org/communities/asteroid-models/search

asteroid Documentation, Release 0.4.0alpha

6.3 Share your models

At the end of each sharing-enabled recipe, all the necessary infos are gathered into a file, the only thing that’s left to
do is to run

’asteroid—upload exp/your_exp_dir/publish_dir —--uploader "Name Here"

Ok, not really. First you need to register to Zenodo (Sign in with GitHub: ok), create a token and use it with the
——token option of the CLI, or by setting the ACCESS_TOKEN environment variable. If you plan to upload more
models (and you should :innocent:), you can fill in your infos in uploader_info.yml at the root, like this.

uploader: Manuel Pariente
affiliation: INRIA
git_username: mpariente
token: TOKEN_HERE

6.4 Note about licenses

All Asteroid’s pretrained models are shared under the Attribution-ShareAlike 3.0 (CC BY-SA 3.0) license. This means
that models are released under the same license as the original training data. If any non-commercial data is used
during training (wsj0, WHAM’s noises etc..), the models are non-commercial use only. This is indicated in the
bottom of the corresponding Zenodo page (ex: here).

20 Chapter 6. Pretrained models

https://zenodo.org/
https://zenodo.org/account/settings/applications/tokens/new/
https://creativecommons.org/licenses/by-sa/3.0/
https://zenodo.org/record/3903795#collapseTwo

CHAPTER /

FAQ

7.1 My results are worse than the ones reported in the README,
why?

There are few possibilities here:

1. Your data is wrong. We had this examples with wsjO0-mix, WHAM etc.. where wv2 was used instead of wvl to
generate the data. This was fixed in #166. Chances are there is a pretrained model available for the given dataset, run
the evaluation with it. If your results are different, it’s a data problem. Refs: #1064, #165 and #188.

2. You stopped training too early. We’ve seen this happen, specially with DPRNN. Be sure that your training/validation
losses are completely flat at the end of training. Need to attach a DPRNN log here.

3. If it’s not both, there is a real bug and we’re happy you caught it! Please, open an issue with your
torch/pytorch_lightning/asteroid versions to let us know.

7.2 How long does it take to train a model?

Need a log here.

7.3 Can | use the pretrained models for commercial purposes?

Not always. See the note on pretrained models Licenses Note about licenses

7.4 Separated audio is really bad, what is happening?

There are several possible cause to this, a common one is clipping. 1. When training with scale invariant losses (e.g.
SI-SNR) the audio output can be unbounded. However, waveform values should be normalized to [-1, 1] range before

21

https://github.com/mpariente/asteroid/pull/166
https://github.com/mpariente/asteroid/issues/164
https://github.com/mpariente/asteroid/issues/165
https://github.com/mpariente/asteroid/issues/188

asteroid Documentation, Release 0.4.0alpha

saving, otherwise they will be clipped. See Clipping on Wikipedia and issue #250

22 Chapter 7. FAQ

https://en.wikipedia.org/wiki/Clipping_(audio)
https://github.com/mpariente/asteroid/issues/250

CHAPTER 8

PyTorch Datasets

This page lists the supported datasets and their corresponding PyTorch’s Dataset class. If you’re interested in the
datasets more than in the code, see this page.

8.1 LibriMix

8.2 WsjOmix

8.3 WHAM!

8.4 WHAMR!

8.5 SMS-WSJ

8.6 KinectWSJMix
8.7 DNSDataset
8.8 MUSDB18

8.9 FUSS

8.10 AVSpeech

23

asteroid Documentation, Release 0.4.0alpha

24 Chapter 8. PyTorch Datasets

CHAPTER 9

Filterbank API

9.1 Filterbank, Encoder and Decoder

class asteroid.filterbanks.Filterbank (n_filters, kernel_size, stride=None)
Bases: sphinx.ext.autodoc.importer._MockObject

Base Filterbank class. Each subclass has to implement a filters property.
Parameters
e n_filters (int)—- Number of filters.
* kernel_size (int) - Length of the filters.

* stride (int, optional)- Stride of the conv or transposed conv. (Hop size). If None
(default), set to kernel_size // 2.

Variables n_feats_out (int)— Number of output filters.

get_config()
Returns dictionary of arguments to re-instantiate the class.

filters
Abstract method for filters.

class asteroid.filterbanks.Encoder (filterbank, is_pinv=False, as_convld=True, padding=0)
Bases: asteroid.filterbanks.enc_dec._EncDec

Encoder class.
Add encoding methods to Filterbank classes. Not intended to be subclassed.
Parameters
e filterbank (Filterbank)— The filterbank to use as an encoder.

* is_pinv (bool)— Whether to be the pseudo inverse of filterbank.

25

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

asteroid Documentation, Release 0.4.0alpha

* as_convld (bool) — Whether to behave like nn.Convld. If True (default), forwarding
input with shape (batch, 1, time) will output a tensor of shape (batch, freq, conv_time). If
False, will output a tensor of shape (batch, 1, freq, conv_time).

* padding (int) — Zero-padding added to both sides of the input.

forward (waveform)
Convolve input waveform with the filters from a filterbank. :param waveform: any tensor with samples
along the

last dimension. The waveform representation with and batch/channel etc.. dimension.

Returns torch.Tensor — The corresponding TF domain signal.

Shapes:
>>> (time,) ——> (freqg, conv_time)
>>> (batch, time) --> (batch, freq, conv_time) # Avoid
>>> if as_convld:
>>> (batch, 1, time) --> (batch, freqg, conv_time)
>>> (batch, chan, time) —--> (batch, chan, freq, conv_time)
>>> else:
>>> (batch, chan, time) --> (batch, chan, freq, conv_time)
>>> (batch, any, dim, time) --> (batch, any, dim, freq, conv_time)

classmethod pinv_of (filterbank, **kwargs)
Returns an Encoder, pseudo inverse of a F'i Il terbank or Decoder.

class asteroid.filterbanks.Decoder (filterbank, is_pinv=False, padding=0, output_padding=0)
Bases: asteroid.filterbanks.enc_dec._EncDec

Decoder class.
Add decoding methods to Filterbank classes. Not intended to be subclassed.
Parameters
* filterbank (Filterbank)— The filterbank to use as an decoder.
* is_pinv (bool)— Whether to be the pseudo inverse of filterbank.
* padding (int) — Zero-padding added to both sides of the input.
* output_padding (int)— Additional size added to one side of the output shape.
Notes padding and output_padding arguments are directly passed to F.conv_transposeld.
forward (spec)
Applies transposed convolution to a TF representation.

This is equivalent to overlap-add.

Parameters spec (torch.Tensor) — 3D or 4D Tensor. The TF representation. (Output of
Encoder. forward()).

Returns torch.Tensor — The corresponding time domain signal.

classmethod pinv_of (filterbank)
Returns an Decoder, pseudo inverse of a filterbank or Encoder.

class asteroid.filterbanks.make_enc_dec
Creates congruent encoder and decoder from the same filterbank family.

26 Chapter 9. Filterbank API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

Parameters

* fb_name (str, className)— Filterbank family from which to make encoder and de-
coder. To choose among ['free', 'analytic_free', 'param_sinc', 'stft'].
Can also be a class defined in a submodule in this subpackade (e.g. FreeFB).

e n_filters (int)- Number of filters.
* kernel_size (int) - Length of the filters.

* stride (int, optional) — Stride of the convolution. If None (default), set to
kernel_size // 2.

* who_is_pinv (str, optional)— If None, no pseudo-inverse filters will be used. If
string (among ['encoder', 'decoder']), decides which of Encoder or Decoder
will be the pseudo inverse of the other one.

* padding (int) — Zero-padding added to both sides of the input. Passed to Encoder and
Decoder.

* output_padding (int)— Additional size added to one side of the output shape. Passed
to Decoder.

* xxkwargs — Arguments which will be passed to the filterbank class additionally to the
usual n_filters, kernel_size and stride. Depends on the filterbank family.

Returns Encoder, Decoder

class asteroid.filterbanks.get
Returns a filterbank class from a string. Returns its input if it is callable (already a i 1 t erbank for example).

Parameters identifier (str or Callable or None) - the filterbank identifier.

Returns 7ilterbank or None

9.2 Learnable filterbanks

9.2.1 Free

class asteroid.filterbanks.free_fb.FreeFB (n_filters, kernel_size, stride=None, **kwargs)
Bases: asteroid.filterbanks.enc_dec.Filterbank

Free filterbank without any constraints. Equivalent to nn.Conv1ld.
Parameters
e n_filters (int)— Number of filters.
* kernel_size (int) - Length of the filters.

e stride (int, optional) — Stride of the convolution. If None (default), set to
kernel_size // 2.

Variables n_feats_out (int)— Number of output filters.
References

[1] : “Filterbank design for end-to-end speech separation”. Submitted to ICASSP 2020. Manuel Pariente,
Samuele Cornell, Antoine Deleforge, Emmanuel Vincent.

9.2. Learnable filterbanks 27

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

filters
Abstract method for filters.

9.2.2 Analytic Free

class asteroid.filterbanks.analytic_free_fb.AnalyticFreeFB (n_filters, ker-
nel_size, stride=None,
*rkwargs)

Bases: asteroid.filterbanks.enc_dec.Filterbank
Free analytic (fully learned with analycity constraints) filterbank. For more details, see [1].
Parameters

e n_filters (int) — Number of filters. Half of n_filters will have parameters, the other
half will be the hilbert transforms. n_filters should be even.

* kernel_size (int) - Length of the filters.

e stride (int, optional) — Stride of the convolution. If None (default), set to
kernel_size // 2.

Variables n_feats_out (int) - Number of output filters.

References
[1] : “Filterbank design for end-to-end speech separation”. Submitted to ICASSP 2020. Manuel Pariente,
Samuele Cornell, Antoine Deleforge, Emmanuel Vincent.

filters
Abstract method for filters.

9.2.3 Parameterized Sinc

class asteroid.filterbanks.param_sinc_fb.ParamSincFB (n_filters, kernel_size,
stride=None, sam-
ple_rate=16000,
min_low_hz=50,

min_band_hz=50)
Bases: asteroid.filterbanks.enc_dec.Filterbank

Extension of the parameterized filterbank from [1] proposed in [2]. Modified and extended from from https:
//github.com/mravanelli/SincNet

Parameters

e n_filters (int)— Number of filters. Half of n_filters (the real parts) will have parame-
ters, the other half will correspond to the imaginary parts. n_filters should be even.

* kernel_size (int) - Length of the filters.

e stride (int, optional) — Stride of the convolution. If None (default), set to
kernel_size // 2.

* sample_rate (int, optional)- The sample rate (used for initialization).
e min_low_hz (int, optional)-Lowestlow frequency allowed (Hz).

* min_band_hz (int, optional)- Lowestband frequency allowed (Hz).

28 Chapter 9. Filterbank API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://github.com/mravanelli/SincNet
https://github.com/mravanelli/SincNet
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

Variables n_feats_out (int)— Number of output filters.

References
[1] : “Speaker Recognition from raw waveform with SincNet”. SLT 2018. Mirco Ravanelli, Yoshua Bengio.
https://arxiv.org/abs/1808.00158

[2] : “Filterbank design for end-to-end speech separation”. Submitted to ICASSP 2020. Manuel Pariente,
Samuele Cornell, Antoine Deleforge, Emmanuel Vincent. https://arxiv.org/abs/1910.10400

get_config()
Returns dictionary of arguments to re-instantiate the class.

filters
Compute filters from parameters

9.3 Fixed filterbanks

9.3.1 STFT

class asteroid.filterbanks.stft_fb.STFTFB (n_filters, kernel_size, stride=None, win-

dow=None, **kwargs)
Bases: asteroid.filterbanks.enc_dec.Filterbank

STFT filterbank.
Parameters

* n_filters (int)— Number of filters. Determines the length of the STFT filters before
windowing.

* kernel_size (int)— Length of the filters (i.e the window).

* stride (int, optional) - Stride of the convolution (hop size). If None (default), set
to kernel_size // 2.

* window (numpy.ndarray, optional) — If None, defaults to np.sqgrt (np.
hanning()).

Variables n_feats_out (int) - Number of output filters.

filters
Abstract method for filters.

asteroid.filterbanks.stft_fb.perfect_synthesis_window (analysis_window, hop_size)

Computes a window for perfect synthesis given an analysis window and a hop size.

Parameters
* analysis_window (np.array)— Analysis window of the transform.
* hop_size (int)— Hop size in number of samples.

Returns np.array — the synthesis window to use for perfectly inverting the STFT.

9.3. Fixed filterbanks 29

https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1808.00158
https://arxiv.org/abs/1910.10400
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

9.3.2 MP-GTFB

class asteroid.filterbanks.multiphase_gammatone_fb.MultiphaseGammatoneFB (n_filters=128,
ker-
nel_size=16,
sam-

ple_rate=8000,

stride=None,

**kwargs)
Bases: asteroid.filterbanks.enc_dec.Filterbank

Multi-Phase Gammatone Filterbank as described in [1]. Please cite [1] whenever using this. Original code
repository: <https://github.com/sp-uhh/mp-gtf>

Parameters
e n_filters (int)—- Number of filters.
* kernel_size (int) - Length of the filters.
* sample_rate (int, optional)- The sample rate (used for initialization).

e stride (int, optional) — Stride of the convolution. If None (default), set to
kernel_size // 2.

References: [1] David Ditter, Timo Gerkmann, “A Multi-Phase Gammatone Filterbank for

Speech Separation via TasNet”, ICASSP 2020 Available: <https://ieeexplore.ieee.org/document/9053602/>

filters
Abstract method for filters.

asteroid.filterbanks.multiphase_gammatone_fb.erb_scale_2_ freq hz (freq_erb)
Convert frequency on ERB scale to frequency in Hertz

asteroid.filterbanks.multiphase_gammatone_fb.freq hz_ 2 erb_scale (freq_hz)
Convert frequency in Hertz to frequency on ERB scale

asteroid.filterbanks.multiphase_gammatone_fb.gammatone_impulse_response (samplerate_hz,
len_sec,
cen-
ter_freq_hz,
phase_shift)
Generate single parametrized gammatone filter

asteroid.filterbanks.multiphase_gammatone_fb.normalize_filters (filterbank)
Normalizes a filterbank such that all filters have the same root mean square (RMS).

9.4 Transforms

9.4.1 Griffin-Lim and MISI

asteroid.filterbanks.griffin_lim.griffin_lim (mag_specgram, stft_enc, angles=None,
istft_dec=None, n_iter=6, momen-
. . . . um=0.9) . .
Estimates matching phase from magnitude spectogram using the ‘fast’ Griffin Lim algorithm [1].

Parameters

30 Chapter 9. Filterbank API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

* mag_specgram (torch. Tensor) — (any, dim, ension, freq, frames) as returned by En-
coder(STFTFB), the magnitude spectrogram to be inverted.

* stft_enc (Encoder [STFTFB]) — The Encoder(STFTFB()) object that was used to
compute the input mag_spec.

* angles (None or Tensor) — Angles to use to initialize the algorithm. If None (de-
fault), angles are init with uniform ditribution.

* istft_dec (None or Decoder [STFTFB])— Optional Decoder to use to get back to
the time domain. If None (default), a perfect reconstruction Decoder is built from stft_enc.

* n_iter (int)— Number of griffin-lim iterations to run.

* momentum (f1oat) — The momentum of fast Griffin-Lim. Original Griffin-Lim is ob-
tained for momentum=0.

Returns forch.Tensor — estimated waveforms of shape (any, dim, ension, time).

Examples

>>> stft = Encoder (STFTFB(n_filters=256, kernel_size=256, stride=128))
>>> wav = torch.randn (2, 1, 8000)

>>> spec = stft (wav)

>>> masked_spec = spec * torch.sigmoid(torch.randn_like (spec))

>>> mag = transforms.take_mag(masked_spec, -2)

>>> est_wav = griffin_lim(mag, stft, n_iter=32)

References

[1] Perraudin et al. “A fast Griffin-Lim algorithm,” WASPAA 2013. [2] D. W. Griffin and J. S. Lim: “Signal
estimation from modified short-time Fourier transform,” ASSP 1984.

asteroid.filterbanks.griffin_lim.misi (mixture_wav, mag_specgrams, stft_enc, an-
gles=None, istft_dec=None, n_iter=6, momen-
tum=0.0, src_weights=None, dim=1)
Jointly estimates matching phase from magnitude spectograms using the Multiple Input Spectrogram Inversion
(MISI) algorithm [1].

Parameters
e mixture_wav (torch. Tensor) — (batch, time)

* mag_specgrams (torch. Tensor) — (batch, n_src, freq, frames) as returned by En-
coder(STFTFB), the magnitude spectrograms to be jointly inverted using MISI (modified or
not).

* stft_enc (Encoder [STFTFB]) — The Encoder(STFTFB()) object that was used to
compute the input mag_spec.

* angles (None or Tensor) — Angles to use to initialize the algorithm. If None (de-
fault), angles are init with uniform ditribution.

* istft_dec (None or Decoder [STFTFB]) - Optional Decoder to use to get back to
the time domain. If None (default), a perfect reconstruction Decoder is built from stft_enc.

* n_iter (int)— Number of MISI iterations to run.

* momentum (float) — Momentum on updates (this argument comes from GriffinLim).
Defaults to 0 as it was never proposed anywhere.

9.4. Transforms 31

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

asteroid Documentation, Release 0.4.0alpha

* src_weights (None or torch.Tensor) — Consistency weight for each source.
Shape needs to be broadcastable to istft_dec(mag_specgrams). We make sure that the
weights sum up to 1 along dim dim. If src_weights is None, compute them based on relative
power.

e dim (int) — Axis which contains the sources in mag_specgrams. Used for consistency
constraint.

Returns rorch.Tensor — estimated waveforms of shape (batch, n_src, time).

Examples

>>> stft = Encoder (STFTFB(n_filters=256, kernel_size=256, stride=128))
>>> wav = torch.randn (2, 3, 8000)

>>> specs = stft (wav)

>>> masked_specs = specs * torch.sigmoid(torch.randn_like (specs))

>>> mag = transforms.take_mag(masked_specs, -2)

>>> est_wav = misi(wav.sum(l), mag, stft, n_iter=32)

References

[1] Gunawan and Sen, “Iterative Phase Estimation for the Synthesis of Separated Sources From Single-Channel
Mixtures,” in IEEE Signal Processing Letters, 2010. [2] Wang, LeRoux et al. “End-to-End Speech Separation
with Unfolded Iterative Phase Reconstruction.” Interspeech 2018 (2018)

9.4.2 Complex transforms

asteroid.filterbanks.transforms.angle (fensor, dim=-2)

Return the angle of the complex-like torch tensor.
Parameters
* tensor (torch. Tensor) — the complex tensor from which to extract the phase.

* dim (int, optional) - the frequency (or equivalent) dimension along which real and
imaginary values are concatenated.

Returns torch.Tensor —The counterclockwise angle from the positive real axis on the complex
plane in radians.

asteroid.filterbanks.transforms.apply complex mask ({f rep, mask, dim=-2)

Applies a complex-valued mask to a complex-valued representation.

Operands are assumed to have the real parts of each entry followed by the imaginary parts of each entry along
dimension dim, e.g. for, dim = 1, the matrix

is interpreted as
where j is such thatj *j = -1.
Parameters
* tf_rep (torch.Tensor) - The time frequency representation to apply the mask to.
* (class (mask) —torch.Tensor): The complex-valued mask to be applied.

* dim (int) — The frequency (or equivalent) dimension of both #f_rep an mask along which
real and imaginary values are concatenated.

32

Chapter 9. Filterbank API

https://docs.python.org/3/library/constants.html#None
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

Returns torch.Tensor —tf_rep multiplied by the mask in the complex sense.

asteroid.filterbanks.transforms.apply_mag_mask (if_rep, mask, dim=-2)
Applies a real-valued mask to a complex-valued representation.

If ¢f_rep has 2N elements along dim, mask has N elements, mask is duplicated along dim to apply the same mask
to both the Re and Im.

tf_rep is assumed to have the real parts of each entry followed by the imaginary parts of each entry along
dimension dim, e.g. for, dim = 1, the matrix

is interpreted as
where j is such thatj *j = -1.
Parameters

* tf rep (torch.Tensor) - The time frequency representation to apply the mask to. Re
and Im are concatenated along dim.

* mask (torch.Tensor) — The real-valued mask to be applied.

* dim (int) - The frequency (or equivalent) dimension of both #f_rep and mask along which
real and imaginary values are concatenated.

Returns torch.Tensor —tf_rep multiplied by the mask.

asteroid.filterbanks.transforms.apply_real_mask (ff_rep, mask, dim=-2)
Applies a real-valued mask to a real-valued representation.

It corresponds to ReIm mask in [1].
Parameters
* tf rep (torch.Tensor) - The time frequency representation to apply the mask to.
* mask (torch.Tensor) — The real-valued mask to be applied.
* dim (int)— Kept to have the same interface with the other ones.
Returns torch.Tensor —tf_rep multiplied by the mask.

asteroid.filterbanks.transforms.check_complex (tensor, dim=-2)
Assert that tensor is an Asteroid-style complex in a given dimension.

Parameters
e tensor (torch. Tensor) — tensor to be checked.

* dim (int)—the frequency (or equivalent) dimension along which real and imaginary values
are concatenated.

Raises AssertionError if dimension is not even in the specified dimension

asteroid.filterbanks.transforms.check_torchaudio_complex (fensor)
Assert that tensor is Torchaudo-style complex-like (last dimension is 2).

Parameters tensor (torch. Tensor) — tensor to be checked.
Raises AssertionError if last dimension is != 2.

asteroid.filterbanks.transforms.ebased_vad (mag_spec, th_db=40)
Compute energy-based VAD from a magnitude spectrogram (or equivalent).

Parameters

9.4. Transforms 33

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

* mag_spec (torch. Tensor) — the spectrogram to perform VAD on. Expected shape
(batch, *, freq, time). The VAD mask will be computed independently for all the leading
dimensions until the last two. Independent of the ordering of the last two dimensions.

* th_db (int)— The threshold in dB from which a TF-bin is considered silent.
Returns torch.BoolTensor, the VAD mask.

Examples

>>> import torch
>>> mag_spec = torch.abs(torch.randn (10, 2, 65, 16))
>>> batch_src_mask = ebased_vad (mag_spec)

asteroid.filterbanks.transforms.from_mag_and_phase (mag, phase, dim=-2)
Return a complex-like torch tensor from magnitude and phase components.

Parameters
* mag (torch. tensor) — magnitude of the tensor.
* phase (torch. tensor) — angle of the tensor

* dim (int, optional) - the frequency (or equivalent) dimension along which real and
imaginary values are concatenated.

Returns torch.Tensor — The corresponding complex-like torch tensor.

asteroid.filterbanks.transforms.from_numpy (array, dim=-2)
Convert complex numpy array to complex-like torch tensor.

Parameters
* array (np.array) — array to be converted.

* dim (int, optional) - the frequency (or equivalent) dimension along which real and
imaginary values are concatenated.

Returns torch.Tensor — Corresponding torch.Tensor (complex axis in dim ‘dim‘=

asteroid.filterbanks.transforms.£from torchaudio (tensor, dim=-2)
Converts torchaudio style complex tensor to complex-like torch tensor.

Parameters
* tensor (torch. tensor) — torchaudio-style complex-like torch tensor.

* dim (int, optional) - the frequency (or equivalent) dimension along which real and
imaginary values are concatenated.

Returns torch.Tensor — asteroid-style complex-like torch tensor.

asteroid.filterbanks.transforms.is_asteroid_complex (fensor, dim=-2)
Check if tensor is complex-like in a given dimension.

Parameters
e tensor (torch. Tensor) —tensor to be checked.

* dim (int) - the frequency (or equivalent) dimension along which real and imaginary values
are concatenated.

Returns True if dimension is even in the specified dimension, otherwise False

34 Chapter 9. Filterbank API

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

asteroid.filterbanks.transforms.is_torchaudio_complex (x)
Check if tensor is Torchaudio-style complex-like (last dimension is 2).

Parameters tensor (torch. Tensor) — tensor to be checked.
Returns True if last dimension is 2, else False.

asteroid.filterbanks.transforms.mul_c (inp, other, dim=-2)
Entrywise product for complex valued tensors.

Operands are assumed to have the real parts of each entry followed by the imaginary parts of each entry along
dimension dim, e.g. for, dim = 1, the matrix

is interpreted as
where j is such thatj *j = -1.
Parameters

* inp (torch.Tensor) — The first operand with real and imaginary parts concatenated on
the dim axis.

* other (torch.Tensor)— The second operand.

* dim (int, optional) — frequency (or equivalent) dimension along which real and
imaginary values are concatenated.

Returns
torch.Tensor — The complex multiplication between inp and other
For now, it assumes that other has the same shape as inp along dim.

asteroid.filterbanks.transforms.take_mag (x, dim=-2)
Takes the magnitude of a complex tensor.

The operands is assumed to have the real parts of each entry followed by the imaginary parts of each entry along
dimension dim, e.g. for, dim = 1, the matrix

is interpreted as
where j is such thatj *j = -1.
Parameters
* x(torch.Tensor)— Complex valued tensor.

* dim (int) — frequency (or equivalent) dimension along which real and imaginary values
are concatenated.

Returns torch.Tensor — The magnitude of x.

asteroid.filterbanks.transforms.to_numpy (fensor, dim=-2)
Convert complex-like torch tensor to numpy complex array

Parameters
* tensor (torch. Tensor)— Complex tensor to convert to numpy.

* dim (int, optional) - the frequency (or equivalent) dimension along which real and
imaginary values are concatenated.

Returns numpy . array — Corresponding complex array.

asteroid.filterbanks.transforms.to_torchaudio (tensor, dim=-2)
Converts complex-like torch tensor to torchaudio style complex tensor.

Parameters

9.4. Transforms 35

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

* tensor (torch. tensor) — asteroid-style complex-like torch tensor.

* dim (int, optional) - the frequency (or equivalent) dimension along which real and
imaginary values are concatenated.

Returns torch.Tensor — torchaudio-style complex-like torch tensor.

36 Chapter 9. Filterbank API

https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor

cHAaPTER 10

DNN building blocks

10.1 Convolutional blocks

class asteroid.masknn.convolutional.ConvlDBlock (in_chan, hid_chan, skip_out_chan,

kernel_size, padding, dilation,
norm_type="gLN’)

Bases: sphinx.ext.autodoc.importer._MockObject

One dimensional convolutional block, as proposed in [1].

Parameters

References

in_chan (int)— Number of input channels.
hid_chan (int)— Number of hidden channels in the depth-wise convolution.

skip_out_chan (int) — Number of channels in the skip convolution. If O or None,
ConviDBlock won’t have any skip connections. Corresponds to the the block in v1 or the
paper. The forward return res instead of [res, skip] in this case.

kernel_size (int) - Size of the depth-wise convolutional kernel.

padding (int)— Padding of the depth-wise convolution.

dilation (int)— Dilation of the depth-wise convolution.

norm_type (str, optional)- Type of normalization to use. To choose from
— 'gLN': global Layernorm

— 'cLN': channelwise Layernorm

— 'cgLN': cumulative global Layernorm

[1] : “Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation” TASLP 2019
Yi Luo, Nima Mesgarani https://arxiv.org/abs/1809.07454

37

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://arxiv.org/abs/1809.07454

asteroid Documentation, Release 0.4.0alpha

forward (x)
Input shape [batch, feats, seq]

class asteroid.masknn.convolutional .DCUMaskNet (encoders, decoders,

mask_bound="tanh’, **kwargs)
Bases: asteroid.masknn.base.BaseDCUMaskNet

Masking part of DCUNet, as proposed in [1].

Valid architecture values for the default_architecture classmethod are: ‘“Large-DCUNet-20”,
“DCUNet-20”, “DCUNet-16", “DCUNet-10".

References

[1] : “Phase-aware Speech Enhancement with Deep Complex U-Net”, Hyeong-Seok Choi et al. https://arxiv.
org/abs/1903.03107

class asteroid.masknn.convolutional .DCUNetComplexDecoderBlock (in_chan,
out_chan,
kernel_size,
stride, padding,
norm_type="bN’,
activa-
tion="leaky_relu’)
Bases: sphinx.ext.autodoc.importer._MockObject
Decoder block as proposed in [1].
Parameters
* in_chan (int) — Number of input channels.
* out_chan (int)— Number of output channels.
* kernel_size (Tuple[int, int])- Convolution kernel size.
e stride (Tuple[int, int])— Convolution stride.
* padding (Tuple[int, int])- Convolution padding.

* norm_type (str, optional) — Type of normalization to use. See asteroid.
masknn.norms for valid values.

* activation (str, optional) — Type of activation to use. See asteroid.
masknn.activations for valid values.

References

[1] : “Phase-aware Speech Enhancement with Deep Complex U-Net”, Hyeong-Seok Choi et al. https://arxiv.
org/abs/1903.03107

class asteroid.masknn.convolutional .DCUNetComplexEncoderBlock (in_chan,
out_chan,
kernel_size,
stride, padding,
norm_type="bN’,
activa-

tion="leaky_relu’)
Bases: sphinx.ext.autodoc.importer._MockObject

Encoder block as proposed in [1].

38 Chapter 10. DNN building blocks

https://arxiv.org/abs/1903.03107
https://arxiv.org/abs/1903.03107
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://arxiv.org/abs/1903.03107
https://arxiv.org/abs/1903.03107

asteroid Documentation, Release 0.4.0alpha

Parameters
* in_chan (int)— Number of input channels.
* out_chan (int)— Number of output channels.
e kernel_size (Tuple[int, int])- Convolution kernel size.
e stride (Tuple[int, int])— Convolution stride.
* padding (Tuple[int, int])- Convolution padding.

* norm_type (str, optional) — Type of normalization to use. See asteroid.
masknn.norms for valid values.

* activation (str, optional) — Type of activation to use. See asteroid.
masknn.activations for valid values.

References
[1] : “Phase-aware Speech Enhancement with Deep Complex U-Net”, Hyeong-Seok Choi et al. https://arxiv.
org/abs/1903.03107

class asteroid.masknn.convolutional.SuDORMRF (in_chan, n_src, bn_chan=128,
num_blocks=16, upsampling_depth=4,
mask_act="softmax’)
Bases: sphinx.ext.autodoc.importer._MockObject

SuDORMRF mask network, as described in [1].
Parameters
* in_chan (int)— Number of input channels. Also number of output channels.
* n_src (int)— Number of sources in the input mixtures.

* bn_chan (int, optional) — Number of bins in the bottleneck layer and the UNet
blocks.

e num_blocks (int)— Number of of UBlocks.
* upsampling_depth (int)— Depth of upsampling.

* mask_act (str)— Name of output activation.

References
[1] [“Sudo rm -rf: Efficient Networks for Universal Audio Source Separation”,] Tzinis et al. MLSP 2020.

class asteroid.masknn.convolutional .SuDORMRFImproved (in_chan, n_src, bn_chan=128,
num_blocks=16, up-
sampling_depth=4,
mask_act="relu’)
Bases: sphinx.ext.autodoc.importer._MockObject

Improved SUDORMRF mask network, as described in [1].
Parameters
* in chan (int)— Number of input channels. Also number of output channels.

* n_src (int)— Number of sources in the input mixtures.

10.1. Convolutional blocks 39

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://arxiv.org/abs/1903.03107
https://arxiv.org/abs/1903.03107
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

* bn_chan (int, optional) — Number of bins in the bottleneck layer and the UNet
blocks.

* num_blocks (int)— Number of of UBlocks
* upsampling_depth (int)— Depth of upsampling

* mask_act (st r)— Name of output activation.

References

[1] [“Sudo rm -rf: Efficient Networks for Universal Audio Source Separation”,] Tzinis et al. MLSP 2020.

class asteroid.masknn.convolutional.TDConvNet (in_chan, n_src, out_chan=None,
n_blocks=38, n_repeats=3, bn_chan=128,
hid_chan=512, skip_chan=128,

conv_kernel_size=3, norm_type="gLN’,

mask_act="relu’, kernel_size=None)
Bases: sphinx.ext.autodoc.importer._MockObject

Temporal Convolutional network used in ConvTasnet.
Parameters
* in_chan (int)— Number of input filters.
e n_src (int)— Number of masks to estimate.

e out_chan (int, optional) — Number of bins in the estimated masks. If None,
out_chan = in_chan.

* n_blocks (int, optional)— Number of convolutional blocks in each repeat. De-
faults to 8.

* n_repeats (int, optional)— Number of repeats. Defaults to 3.
* bn_chan (int, optional)- Number of channels after the bottleneck.
* hid_chan (int, optional)- Number of channels in the convolutional blocks.

* skip_chan (int, optional) - Number of channels in the skip connections. If O or
None, TDConvNet won’t have any skip connections and the masks will be computed from
the residual output. Corresponds to the ConvTasnet architecture in v1 or the paper.

* conv_kernel_size (int, optional)- Kernel size in convolutional blocks.
* norm_type (str, optional)-To choose from 'BN', 'gLN', 'cLN".

* mask_act (str, optional)— Which non-linear function to generate mask.

References
[1] : “Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation” TASLP 2019
Yi Luo, Nima Mesgarani https://arxiv.org/abs/1809.07454
forward (mixture_w)
Parameters mixture_w (torch.Tensor) — Tensor of shape [batch, n_filters, n_frames]

Returns torch.Tensor — estimated mask of shape [batch, n_src, n_filters, n_frames]

40 Chapter 10. DNN building blocks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://arxiv.org/abs/1809.07454
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

class asteroid.masknn.convolutional.TDConvNetpp (in_chan, n_src, out_chan=None,

n_blocks=8, n_repeats=3,
bn_chan=128, hid_chan=512,
skip_chan=128, conv_kernel_size=3,
norm_type="fgLN’, mask_act="relu’)

Bases: sphinx.ext.autodoc.importer._MockObject

Improved Temporal Convolutional network used in [1] (TDCN++)

Parameters

References

in_chan (int)— Number of input filters.
n_src (int)— Number of masks to estimate.

out_chan (int, optional) — Number of bins in the estimated masks. If None,
out_chan = in_chan.

n_blocks (int, optional)— Number of convolutional blocks in each repeat. De-
faults to 8.

n_repeats (int, optional)- Number of repeats. Defaults to 3.
bn_chan (int, optional)- Number of channels after the bottleneck.
hid_chan (int, optional)- Number of channels in the convolutional blocks.

skip_chan (int, optional)— Number of channels in the skip connections. If O or
None, TDConvNet won’t have any skip connections and the masks will be computed from
the residual output. Corresponds to the ConvTasnet architecture in v1 or the paper.

kernel_size (int, optional)- Kernel size in convolutional blocks.
norm_type (str, optional)-To choose from 'BN', 'gLN', 'cLN".

mask_act (str, optional)- Which non-linear function to generate mask.

[1] : Kavalerov, Ilya et al. “Universal Sound Separation.” in WASPAA 2019

Notes

The differences wrt to ConvTasnet’s TCN are 1. Channel wise layer norm instead of global 2. Longer-range
skip-residual connections from earlier repeat inputs

to later repeat inputs after passing them through dense layer.

3. Learnable scaling parameter after each dense layer. The scaling parameter for the second dense layer
in each convolutional block (which is applied rightbefore the residual connection) is initialized to an
exponentially decaying scalar equal to 0.9%*L, where L is the layer or block index.

forward (mixture_w)

Parameters mixture_w (torch.Tensor) — Tensor of shape [batch, n_filters, n_frames]

Returns torch.Tensor — estimated mask of shape [batch, n_src, n_filters, n_frames]

class asteroid.masknn.convolutional.UBlock (out_chan=128, in_chan=512, upsam-

pling_depth=4)

Bases: asteroid.masknn.convolutional. BaseUBlock

10.1. Convolutional blocks 41

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

Upsampling block.
Based on the following principle: REDUCE —--> SPLIT --—-> TRANSFORM —-> MERGE
forward (x)

Parameters x — input feature map

Returns transformed feature map

class asteroid.masknn.convolutional.UConvBlock (out_chan=128, in_chan=512, upsam-
pling_depth=4)
Bases: asteroid.masknn.convolutional._ BaseUBlock

Block which performs successive downsampling and upsampling in order to be able to analyze the input features
in multiple resolutions.

forward (x)

Args x: input feature map

Returns transformed feature map

10.2 Recurrent blocks

class asteroid.masknn.recurrent.DCCRMaskNet (encoders, decoders, n_freqs, **kwargs)
Bases: asteroid.masknn.base.BaseDCUMaskNet

Masking part of DCCRNet, as proposed in [1].
Valid architecture values for the default_architecture classmethod are: “DCCRN”.
Parameters

* encoders (list of length N of tuples of (in_chan, out_chan, kernel_size, stride, padding))
— Arguments of encoders of the u-net

* decoders (list of length N of tuples of (in_chan, out_chan, kernel_size, stride, padding))
— Arguments of decoders of the u-net

* n_freqgs (int)-— Number of frequencies (dim 1) of input to ‘“.forward()‘. n_freqgs - 1 must
be divisible by f 0 *f 1 *... *f N where f_k are the frequency strides of the encoders.

References

[1]: “DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement”, Yanxin
Hu et al. https://arxiv.org/abs/2008.00264

class asteroid.masknn.recurrent .DCCRMaskNetRNN (in_size, hid_size=128,
rnn_type="LSTM’, norm_type=None)
Bases: sphinx.ext.autodoc.importer._MockObject

RNN (LSTM) layer between encoders and decoders introduced in [1].
Parameters

* in_size (int)— Number of inputs to the RNN. Must be the product of non-batch, non-
time dimensions of output shape of last encoder, i.e. if the last encoder output shape is
[batch, n_chans, n_freqs, time], in_size must be n_chans * n_fregs.

e hid_size (int, optional)- Number of units in RNN.

42 Chapter 10. DNN building blocks

https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/2008.00264
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

* rnn_type (str, optional)-Type of RNN touse. See SingleRNN for valid values.

* norm_type (Optional([str], optional) — Norm to use after linear. See
asteroid.masknn.norms for valid values. (Not used in [1]).

References
[1]: “DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement”, Yanxin
Hu et al. https://arxiv.org/abs/2008.00264

forward (x: <sphinx.ext.autodoc.importer._MockObject object at Ox7fbe91ec8978>)
Input shape: [batch, ..., time]

class asteroid.masknn.recurrent .DPRNN (in_chan, n_src, out_chan=None, bn_chan=128,
hid_size=128, chunk_size=100, hop_size=None,
n_repeats=6, norm_type="gLN’, mask_act="relu’,
bidirectional=True, rnn_type="LSTM’,

num_layers=1, dropout=0)
Bases: sphinx.ext.autodoc.importer._MockObject

Dual-path RNN Network for Single-Channel Source Separation introduced in [1].

Parameters
* in_chan (int)— Number of input filters.
* n_src (int)— Number of masks to estimate.

e out_chan (int or None) — Number of bins in the estimated masks. Defaults to
in_chan.

* bn_chan (int)— Number of channels after the bottleneck. Defaults to 128.
* hid_size (int) - Number of neurons in the RNNs cell state. Defaults to 128.
* chunk_size (int)— window size of overlap and add processing. Defaults to 100.

* hop_size (int or None)-hop size (stride) of overlap and add processing. Default to
chunk_size // 2 (50% overlap).

* n_repeats (int)— Number of repeats. Defaults to 6.

* norm_type (str, optional)- Type of normalization to use. To choose from
— 'gLN': global Layernorm
— 'cLN': channelwise Layernorm

* mask_act (str, optional)— Which non-linear function to generate mask.

e bidirectional (bool, optional)-True forbidirectional Inter-Chunk RNN (Intra-
Chunk is always bidirectional).

* rnn_type (str, optional)-—Type of RNN used. Choose between 'RNN', 'LSTM'
and 'GRU"'.

* num_layers (int, optional)- Number of layers in each RNN.

* dropout (float, optional)- Dropoutratio, must be in [0,1].

10.2. Recurrent blocks 43

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://arxiv.org/abs/2008.00264
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

asteroid Documentation, Release 0.4.0alpha

References

[1] “Dual-path RNN: efficient long sequence modeling for time-domain single-channel speech separation”,
Yi Luo, Zhuo Chen and Takuya Yoshioka. https://arxiv.org/abs/1910.06379
forward (mixture_w)
Parameters mixture_w (torch.Tensor) — Tensor of shape [batch, n_filters, n_frames]
Returns
torch.Tensor estimated mask of shape [batch, n_src, n_filters, n_frames]

class asteroid.masknn.recurrent .DPRNNBlock (in_chan, hid_size, norm_type="gLN’,
bidirectional=True, rnn_type="LSTM’,

num_layers=1, dropout=0)
Bases: sphinx.ext.autodoc.importer._MockObject

Dual-Path RNN Block as proposed in [1].
Parameters
* in_chan (int) - Number of input channels.
e hid_size (int) - Number of hidden neurons in the RNNs.

* norm_type (str, optional) — Type of normalization to use. To choose from -
'gLN"': global Layernorm - ' cLN': channelwise Layernorm

e bidirectional (bool, optional) - True for bidirectional Inter-Chunk RNN.

* rnn_type (str, optional)-Type of RNN used. Choose from 'RNN', 'LSTM' and
'GRU"'.

* num_layers (int, optional)-— Number of layers used in each RNN.

* dropout (float, optional)- Dropoutratio. Must be in [0, 1].

References
[1] “Dual-path RNN: efficient long sequence modeling for time-domain single-channel speech separation”, Yi
Luo, Zhuo Chen and Takuya Yoshioka. https://arxiv.org/abs/1910.06379

forward (x)
Input shape : [batch, feats, chunk_size, num_chunks]

class asteroid.masknn.recurrent .LSTMMasker (in_chan, n_src, out_chan=None,
ran_type="Ilstm’, n_layers=4, hid_size=512,
dropout=0.3, mask_act="sigmoid’, bidirec-
tional=True)

Bases: sphinx.ext.autodoc.importer._MockObject
LSTM mask network introduced in [1], without skip connections.
Parameters
* in_chan (int)— Number of input filters.

* n_src (int)— Number of masks to estimate.

* out_chan (int or None) — Number of bins in the estimated masks. Defaults to
in_chan.

44 Chapter 10. DNN building blocks

https://arxiv.org/abs/1910.06379
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1910.06379
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

asteroid Documentation, Release 0.4.0alpha

rnn_type (str, optional)—Type of RNN used. Choose between 'RNN', 'LSTM'
and 'GRU"'.

n_layers (int, optional)- Number of layers in each RNN.

hid_size (int) - Number of neurons in the RNNs cell state.
* mask_act (str, optional)— Which non-linear function to generate mask.

* bidirectional (bool, optional)-— Whether to use BILSTM

dropout (float, optional)- Dropout ratio, must be in [0,1].

References

[1]: Yi Luo et al. “Real-time Single-channel Dereverberation and Separation with Time-domain Audio
Separation Network”, Interspeech 2018

class asteroid.masknn.recurrent.SingleRNN (rnn_type, input_size, hidden_size, n_layers=1,
dropout=0, bidirectional=False)
Bases: sphinx.ext.autodoc.importer._MockObject

Module for a RNN block.

Inspired from https://github.com/yluo42/TAC/blob/master/utility/models.py Licensed under CC BY-NC-SA 3.0
US.

Parameters

* rnn_type (str) — Select from 'RNN', 'LSTM', 'GRU'. Can also be passed in lower-
case letters.

* input_size (int) - Dimension of the input feature. The input should have shape [batch,
seq_len, input_size].

* hidden_size (int)— Dimension of the hidden state.
* n_layers (int, optional)— Number of layers used in RNN. Default is 1.
* dropout (float, optional)- Dropout ratio. Defaultis 0.

* bidirectional (bool, optional)-— Whether the RNN layers are bidirectional. De-
faultis False.

forward (inp)
Input shape [batch, seq, feats]

class asteroid.masknn.recurrent.StackedResidualBiRNN (rnn_type, n_units, n_layers=4,
dropout=0.0, bidirec-

tional=True)
Bases: sphinx.ext.autodoc.importer._MockObject

Stacked Bidirectional RNN with builtin residual connection. Residual connections are applied on both RNN
directions. Only supports bidiriectional RNNs. See StackedResidualRNN for unidirectional ones.

Parameters

* rnn_type (str)— Select from 'RNN', 'LSTM', 'GRU'. Can also be passed in lower-
case letters.

* n_units (int)— Number of units in recurrent layers. This will also be the expected input
size.

* n_layers (int)— Number of recurrent layers.

10.2. Recurrent blocks 45

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://github.com/yluo42/TAC/blob/master/utility/models.py
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

* dropout (float)— Dropout value, between 0. and 1. (Default: 0.)

* bidirectional (bool) - If True, use bidirectional RNN, else unidirectional. (Default:
False)

forward (x)
Builtin residual connections + dropout applied before residual. Input shape : [batch, time_axis, feat_axis]

class asteroid.masknn.recurrent.StackedResidualRNN (rnn_type, n_units, n_layers=4,
dropout=0.0, bidirec-

tional=False)
Bases: sphinx.ext.autodoc.importer._MockObject

Stacked RNN with builtin residual connection. Only supports forward RNNs. See StackedResidualBiRNN for
bidirectional ones.

Parameters

* rnn_type (str)— Select from 'RNN', 'LSTM', 'GRU'. Can also be passed in lower-
case letters.

* n_units (int)— Number of units in recurrent layers. This will also be the expected input
size.

* n_layers (int)— Number of recurrent layers.
* dropout (float)— Dropout value, between 0. and 1. (Default: 0.)

* bidirectional (bool) - If True, use bidirectional RNN, else unidirectional. (Default:
False)

forward (x)
Builtin residual connections + dropout applied before residual. Input shape : [batch, time_axis, feat_axis]

10.3 Norms

class asteroid.masknn.norms.BatchNorm (*args, **kwargs)
Bases: sphinx.ext.autodoc.importer._MockObject

Wrapper class for pytorch BatchNorm1D and BatchNorm2D

class asteroid.masknn.norms.ChanLN (channel_size)
Bases: asteroid.masknn.norms._LayerNorm

Channel-wise Layer Normalization (chanL.N).

forward (x)
Applies forward pass.

Works for any input size > 2D.
Parameters x (torch.Tensor) — [batch, chan, *]
Returns torch.Tensor —chanLN_x [batch, chan, *]

class asteroid.masknn.norms.CumLN (channel_size)
Bases: asteroid.masknn.norms._LayerNorm

Cumulative Global layer normalization(cumLN).
forward (x)

Parameters x (torch.Tensor)— Shape [batch, channels, length]

46 Chapter 10. DNN building blocks

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

Returns torch.Tensor —cumLN_X [batch, channels, length]

class asteroid.masknn.norms.FeatsGlobLN (channel_size)
Bases: asteroid.masknn.norms._LayerNorm

feature-wise global Layer Normalization (FeatsGlobLN). Applies normalization over frames for each channel.

forward (x)
Applies forward pass.

Works for any input size > 2D.
Parameters x (torch.Tensor) — [batch, chan, time]
Returns torch.Tensor —chanLN_x [batch, chan, time]

class asteroid.masknn.norms.GlobLN (channel_size)
Bases: asteroid.masknn.norms._LayerNorm

Global Layer Normalization (globLN).

forward (x)
Applies forward pass.

Works for any input size > 2D.
Parameters x (torch.Tensor)— Shape [batch, chan, *]
Returns torch.Tensor — gLN_x [batch, chan, *]

asteroid.masknn.norms.bN
alias of asteroid.masknn.norms.BatchNorm

asteroid.masknn.norms.cLN
alias of asteroid.masknn.norms.ChanLN

asteroid.masknn.norms.cgLN
alias of asteroid.masknn.norms.CumLN

asteroid.masknn.norms.fgLN
alias of asteroid.masknn.norms.FeatsGlobLN

asteroid.masknn.norms.gLN
alias of asteroid.masknn.norms.GlobLN

asteroid.masknn.norms.get (identifier)
Returns a norm class from a string. Returns its input if it is callable (already a _LayerNorm for example).

Parameters identifier (str or Callable or None)- the norm identifier.
Returns _TLayerNorm or None

asteroid.masknn.norms.get_complex (identifier)
Like .get but returns a complex norm created with asteroid.complex_nn.OnRelm.

asteroid.masknn.norms.register_norm (custom_norm)
Register a custom norm, gettable with norms. get.

Parameters custom_norm — Custom norm to register.

10.3. Norms a7

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

asteroid Documentation, Release 0.4.0alpha

48 Chapter 10. DNN building blocks

cHAPTER 11

Models

11.1 Base classes

class asteroid.models.base_models.BaseEncoderMaskerDecoder (encoder, masker,
decoder, en-

coder_activation=None)
Bases: asteroid.models.base _models.BaseModel

Base class for encoder-masker-decoder separation models.
Parameters

* encoder (Encoder) — Encoder instance.

e masker (nn.Module) — masker network.

¢ decoder (Decoder) — Decoder instance.

* encoder_activation (Optional[str], optional)— Activation to apply after
encoder. See asteroid.masknn.activations for valid values.

forward (wav)
Enc/Mask/Dec model forward

Parameters wav (torch. Tensor) — waveform tensor. 1D, 2D or 3D tensor, time last.
Returns torch.Tensor, of shape (batch, n_src, time) or (n_src, time).

get_model_args ()
Arguments needed to re-instantiate the model.

postprocess_decoded (decoded)
Hook to perform transformations on the decoded, time domain representation (output of the decoder)
before original shape reconstruction.

Parameters decoded (Tensor of shape (batch, n_src, time))- Outputof the
decoder, before original shape reconstruction.

Returns Transformed decoded

49

https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

postprocess_encoded (#f_rep)

Hook to perform transformations on the encoded, time-frequency domain representation (output of the
encoder) before encoder activation is applied.

Parameters tf_rep (Tensor of shape (batch, freq, time))-Outputoftheen-
coder, before encoder activation is applied.

Returns Transformed #f_rep

postprocess_masked (masked_tf rep)

Hook to perform transformations on the masked time-frequency domain representation (result of masking
in the time-frequency domain) before decoding.

Parameters masked_tf_ rep (Tensor of shape (batch, n_src,

freq,
time)) — Masked time-frequency representation, before decoding.
Returns Transformed masked_tf _rep

postprocess_masks (masks)
Hook to perform transformations on the masks (output of the masker) before masks are applied.

Parameters masks (Tensor of shape (batch, n_src, freqg, time))- Output
of the masker
Returns Transformed masks

class asteroid.models.base_models.BaseModel
Bases: sphinx.ext.autodoc.importer._MockObject

file_ separate (filename: str, output_dir=None, force_overwrite=False, **kwargs) — None
Filename interface to separate.

classmethod from pretrained (pretrained_model_conf_or_path, *args, **kwargs)
Instantiate separation model from a model config (file or dict).

Parameters
¢ pretrained model_conf or path (Union[dict, str])-modelconf asre-
turned by serialize, or path to it. Need to contain model_args and state_dict keys.

* xargs — Positional arguments to be passed to the model.

* xxkwargs — Keyword arguments to be passed to the model. They overwrite the ones in
the model package.

Returns nn.Module corresponding to the pretrained model conf/URL.

Raises ValueError if the input config file doesn’t contain the keys — model_name, model_args or
state_dict.
get_state_dict ()
In case the state dict needs to be modified before sharing the model.

numpy_separate (wav: <sphinx.ext.autodoc.importer._MockObject object at 0x7fbe91e8a7b8>,

**kwargs) — <sphinx.ext.autodoc.importer._MockObject object at

) 0x7fbe91e8a7f0>
Numpy interface to separate.

separate (wav, output_dir=None, force_overwrite=False, **kwargs)
Infer separated sources from input waveforms. Also supports filenames.
Parameters

e wav (Union[torch.Tensor, numpy.ndarray, str]) - waveform ar-
ray/tensor. Shape: 1D, 2D or 3D tensor, time last.

50 Chapter 11. Models

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

asteroid Documentation, Release 0.4.0alpha

* output_dir (str) — path to save all the wav files. If None, estimated sources will be
saved next to the original ones.

* force_overwrite (bool)— whether to overwrite existing files.
* xxkwargs — keyword arguments to be passed to _separate.
Returns

Union[torch.Tensor, numpy.ndarray, None], the estimated sources. (batch, n_src, time)
or (n_src, time) w/o batch dim.

Note: By default, separate calls _separate which calls forward. For models whose forward doesn’t return
waveform tensors, overwrite _separate to return waveform tensors.

serialize ()
Serialize model and output dictionary.

Returns dict, serialized model with keys model_args and state_dict.

torch_separate (wav: <sphinx.ext.autodoc.importer._MockObject object at 0x7fbe91e83c88>,
**kwargs) — <sphinx.ext.autodoc.importer._MockObject object at

. 0x7fbe91e83ccO>
Core logic of separate.

asteroid.models.base_models.BaseTasNet
alias of asteroid.models.base_models.BaseEncoderMaskerDecoder

11.2 Ready-to-use models

class asteroid.models.conv_tasnet.ConvTasNet (n_src, out_chan=None, n_blocks=8,
n_repeats=3, bn_chan=128,
hid_chan=512, skip_chan=128,
conv_kernel_size=3, norm_type="gLN’,
mask_act="sigmoid’, in_chan=None,
fb_name="free’, kernel_size=16,
n_filters=512, stride=8, en-

coder_activation=None, **fb_kwargs)
Bases: asteroid.models.base _models.BaseEncoderMaskerDecoder

ConvTasNet separation model, as described in [1].
Parameters
* n_src (int)— Number of sources in the input mixtures.

e out_chan (int, optional) — Number of bins in the estimated masks. If None,
out_chan = in_chan.

* n_blocks (int, optional)— Number of convolutional blocks in each repeat. De-
faults to 8.

* n_repeats (int, optional)- Number of repeats. Defaults to 3.
* bn_chan (int, optional)-— Number of channels after the bottleneck.

* hid_chan (int, optional)- Number of channels in the convolutional blocks.

11.2. Ready-to-use models 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

* skip_chan (int, optional)— Number of channels in the skip connections. If O or
None, TDConvNet won’t have any skip connections and the masks will be computed from
the residual output. Corresponds to the ConvTasnet architecture in v1 or the paper.

* conv_kernel_size (int, optional)- Kernel size in convolutional blocks.

* norm_type (str, optional)-To choose from 'BN', 'gLN', 'cLN".

* mask_act (str, optional)— Which non-linear function to generate mask.

* in_chan (int, optional)— Number of input channels, should be equal to n_filters.

* fb_name (str, className) - Filterbank family from which to make encoder and de-
coder. To choose among [' free', 'analytic_free', 'param_sinc', 'stft'].

* n_filters (int)— Number of filters / Input dimension of the masker net.
* kernel_size (int) - Length of the filters.

e stride (int, optional) — Stride of the convolution. If None (default), set to
kernel_size // 2.

* xxfb_kwargs (dict)— Additional kwards to pass to the filterbank creation.
References

[1] : “Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation” TASLP 2019
Yi Luo, Nima Mesgarani https://arxiv.org/abs/1809.07454

class asteroid.models.dprnn_tasnet .DPRNNTasNet (n_src, out_chan=None,
bn_chan=128, hid_size=128,
chunk_size=100, hop_size=None,
n_repeats=0, norm_type="gLN’,
mask_act="sigmoid’, bidirec-
tional=True, rnn_type="LSTM’,
num_layers=1, dropout=0,

in_chan=None, fb_name="free’, ker-
nel_size=16, n_filters=64, stride=8, en-

coder_activation=None, **fb_kwargs)
Bases: asteroid.models.base_models.BaseEncoderMaskerDecoder

DPRNN separation model, as described in [1].
Parameters
* n_src (int)— Number of masks to estimate.

* out_chan (int or None) — Number of bins in the estimated masks. Defaults to
in_chan.

e bn_chan (int)— Number of channels after the bottleneck. Defaults to 128.
* hid_size (int) - Number of neurons in the RNNs cell state. Defaults to 128.
* chunk_size (int) - window size of overlap and add processing. Defaults to 100.

* hop_size (int or None)-hop size (stride) of overlap and add processing. Default to
chunk_size // 2 (50% overlap).

* n_repeats (int)— Number of repeats. Defaults to 6.
* norm_type (str, optional)- Type of normalization to use. To choose from

— 'gLN': global Layernorm

52 Chapter 11. Models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://arxiv.org/abs/1809.07454
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

asteroid Documentation, Release 0.4.0alpha

— 'cLN': channelwise Layernorm
* mask_act (str, optional)— Which non-linear function to generate mask.

* bidirectional (bool, optional)-True forbidirectional Inter-Chunk RNN (Intra-
Chunk is always bidirectional).

* rnn_type (str, optional)- Type of RNN used. Choose between 'RNN', 'LSTM'
and 'GRU"'.

* num_layers (int, optional)-— Number of layers in each RNN.
* dropout (float, optional)- Dropout ratio, must be in [0,1].
* in_chan (int, optional)-— Number of input channels, should be equal to n_filters.

* fb_name (str, className)— Filterbank family from which to make encoder and de-
coder. To choose among [' free', 'analytic_free', 'param_sinc', 'stft'].

* n_filters (int)— Number of filters / Input dimension of the masker net.
* kernel_size (int) - Length of the filters.

e stride (int, optional) — Stride of the convolution. If None (default), set to
kernel_size // 2.

* xxfb_kwargs (dict)— Additional kwards to pass to the filterbank creation.

References

[1] “Dual-path RNN: efficient long sequence modeling for time-domain single-channel speech separation”,
Yi Luo, Zhuo Chen and Takuya Yoshioka. https://arxiv.org/abs/1910.06379

11.3 Publishing models

class asteroid.models.zenodo.Zenodo (api_key=None, use_sandbox=True)
Bases: object

Faciliate Zenodo’s REST API.
Parameters
* api_key (str)— Access token generated to upload depositions.
* use_sandbox (bool)— Whether to use the sandbox (default: True) Note that api_key are

different in sandbox.

Methods (all methods return the requests response): create_new_deposition
change_metadata_in_deposition, upload_new_file_to_deposition publish_deposition get_deposition
remove_deposition remove_all_depositions

Note: A Zenodo record is something that is public and cannot be deleted. A Zenodo deposit has not yet been
published, is private and can be deleted.

change_metadata_in_deposition (dep_id, metadata)
Set or replace metadata in given deposition

Parameters

11.3. Publishing models 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://arxiv.org/abs/1910.06379
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

asteroid Documentation, Release 0.4.0alpha

* dep_id (int) — deposition id. You cna get it with r = create_new_deposition(); dep_id
= rjson()[‘id’]

* metadata (dict) — Metadata dict.

Examples
metadata = { ‘title’: ‘My first upload’, ‘upload_type’: ‘poster’, ‘description’: “This is my first upload’,
‘creators’: [{ ‘name’: ‘Doe, John’,

‘affiliation’: ‘Zenodo’}]

}

create_new_deposition (metadata=None)
Creates a new deposition.

Parameters metadata (dict, optional)— Metadata dict to upload on the new deposi-
tion.

get_deposition (dep_id=-1)
Get deposition by deposition id. Get all dep_id is -1 (default).

publish_deposition (dep_id)
Publish given deposition (Cannot be deleted)!

Parameters dep_id (int) — deposition id. You cna get it with r = create_new_deposition();
dep_id = rjson()[‘id’]

remove_all_ depositions ()
Removes all unpublished deposition (not records).

remove_deposition (dep_id)
Remove deposition with deposition id dep_id

upload new_file to_deposition (dep_id, file, name=None)
Upload one file to existing deposition. :param dep_id: deposition id. You cna get it with

r = create_new_deposition(); dep_id = r.json()[‘id’]

Parameters

e file (str or io.BufferedReader) — path to a file, or already opened file (path
prefered).

* name (str, optional)—name given to the uploaded file. Defaults to the path.

(More: https://developers.zenodo.org/#deposition-files)

asteroid.models.publisher.display one_level_dict (dic)
Single level dict to HTML :param dic: :type dic: dict

Returns str for HTML-encoded single level dic

asteroid.models.publisher.get_username ()
Get git of FS username for upload.

asteroid.models.publisher.make_license_notice (model_name, licenses, uploader=None)
Make license notice based on license dicts.

Parameters

* model_name (st r)— Name of the model.

54 Chapter 11. Models

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#io.BufferedReader
https://docs.python.org/3/library/stdtypes.html#str
https://developers.zenodo.org/#deposition-files
https://docs.python.org/3/library/stdtypes.html#str

asteroid Documentation, Release 0.4.0alpha

* licenses (List [dict])— List of dict with keys (title, title_link, author, author_link,
licence, licence_link).
* uploader (str)— Name of the uploader such as “Manuel Pariente”.
Returns

str, the license note describing the model, it’s attribution, the original licenses, what we li-
cense it under and the licensor.

asteroid.models.publisher.make_metadata_from_model (model)
Create Zenodo deposit metadata for a given publishable model. :param model: Dictionary with all infos needed
to publish.

More info to come.
Returns dict, the metadata to create the Zenodo deposit with.

asteroid.models.publisher.save_publishable (publish_dir, model_dict, metrics=None,

train_conf=None, recipe=None)
Save models to prepare for publication / model sharing.

Parameters

* publish_dir (str) - Path to the publishing directory. Usually under
exp/exp_name/publish_dir

* model_dict (dict)—dict at least with keys model_args, state_dict,‘dataset’ or licenses
* metrics (dict) - dict with evaluation metrics.
* train_conf (dict) - Training configuration dict (from conf.yml).
* recipe (str)— Name of the recipe.
Returns dict, same as model_dict with added fields.

Raises AssertionError when either ‘model_args", ‘state_dict’, ‘dataset‘ or — licenses are not present
is model_dict.keys()

asteroid.models.publisher.two_level_dict_html (dic)
Two-level dict to HTML. :param dic: two-level dict :type dic: dict

Returns str for HTML-encoded two level dic

asteroid.models.publisher.upload_publishable (publish_dir, uploader=None, affili-
ation=None, git_username=None,
token=None, force_publish=False,

use_sandbox=Fualse, unit_test=False)
Entry point to upload publishable model.

Parameters

* publish_dir (str) - Path to the publishing directory. Usually under
exp/exp_name/publish_dir

* uploader (str)— Full name of the uploader (Ex: Manuel Pariente)
e affiliation(str, optional)— Affiliation (no accent).
* git_username (str, optional)— GitHub username.

* token (str)— Access token generated to upload depositions.

11.3. Publishing models 55

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

asteroid Documentation, Release 0.4.0alpha

* force_publish (bool)— Whether to directly publish without asking confirmation be-
fore. Defaults to False.

* use_sandbox (bool)— Whether to use Zenodo’s sandbox instead of the official Zenodo.
* unit_test (bool) - If True, we do not ask user input and do not publish.

asteroid.models.publisher.zenodo_upload (model, token, model_path=None,
use_sandbox=False)
Create deposit and upload metadata + model

Parameters
* model (dict) —
e token (str)— Access token.
* model_path (st r)— Saved model path.
¢ use_sandbox (bool)— Whether to use Zenodo’s sandbox instead of the official Zenodo.

Returns Zenodo (Zenodo instance with access token) int (deposit ID)

56 Chapter 11. Models

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

cHAPTER 12

Losses & Metrics

class asteroid.losses.PITLossWrapper (loss_func, pit_from="pw_mtx’, perm_reduce=None)
Bases: sphinx.ext.autodoc.importer._MockObject

Permutation invariant loss wrapper.
Parameters
* loss_func - function with signature (targets, est_targets, **kwargs).
* pit_from (st r)— Determines how PIT is applied.

— 'pw_mtx' (pairwise matrix): loss_func computes pairwise losses and returns a
torch.Tensor of shape (batch,n_sre,n_src). Each element [batch, i, j] corresponds to
the loss between targets[:, i] and est_targets][:, j|

- 'pw_pt"' (pairwise point): loss_func computes the loss for a batch of single source
and single estimates (tensors won’t have the source axis). Output shape : (batch). See
get_pw_losses ().

— ‘“perm_avg’ ‘‘(permutation average): loss_func computes the average loss for a
given permutations of the sources and estimates. Output shape : (batch). See
best_perm from perm _avg_loss ().

In terms of efficiency, 'perm_avg' is the least efficicient.

* perm_reduce (Callable) — torch function to reduce permutation losses. Defaults to
None (equivalent to mean). Signature of the func (pwl_set, **kwargs) : (B, n_src!, n_src)
—> (B, n_src!). perm_reduce can receive **kwargs during forward using the reduce_kwargs
argument (dict). If those argument are static, consider defining a small function or using
functools.partial. Only used in ‘pw_mtx’ and ‘pw_pt’ pit_from modes.

For each of these modes, the best permutation and reordering will be automatically computed.

57

https://docs.python.org/3/library/stdtypes.html#str

asteroid Documentation, Release 0.4.0alpha

Examples

>>> import torch

>>> from asteroid.losses import pairwise_neg_sisdr

>>> sources = torch.randn (10, 3, 16000)

>>> est_sources = torch.randn (10, 3, 16000)

>>> # Compute PIT loss based on pairwise losses

>>> loss_func = PITLossWrapper (pairwise_neg_sisdr, pit_from='pw_mtx")
>>> loss_val = loss_func (est_sources, sources)

>>>

>>> # Using reduce

>>> def reduce (perm_loss, src):

>>> weighted = perm_loss % src.norm(dim=-1, keepdim=True)

>>> return torch.mean (weighted, dim=-1)

>>>

>>> loss_func = PITLossWrapper (pairwise_neg_sisdr, pit_from='pw_mtx",
>>> perm_reduce=reduce)

>>> reduce_kwargs = {'src': sources}

>>> loss_val = loss_func (est_sources, sources,

>>> reduce_kwargs=reduce_kwargs)

static best_perm from perm_avg loss (loss_func, est_targets, targets, **kwargs)
Find best permutation from loss function with source axis.

Parameters

* loss_func - function with signature (targets, est_targets, **kwargs) The loss function
batch losses from.

* est_targets — torch.Tensor. Expected shape [batch, nsrc, *]. The batch of target
estimates.

* targets — torch.Tensor. Expected shape [batch, nsrc, *]. The batch of training targets.

* xxkwargs — additional keyword argument that will be passed to the loss function.
Returns

tuple — torch.Tensor: The loss corresponding to the best permutation of size (batch,).

torch.LongTensor: The indexes of the best permutations.

static find_best_perm (pair_wise_losses, n_src, perm_reduce=None, **kwargs)
Find the best permutation, given the pair-wise losses.

Parameters

* pair_wise_losses (torch.Tensor) - Tensor of shape [batch, n_src, n_src]. Pair-
wise losses.

e n_src (int) - Number of sources.

* perm_reduce (Callable) — torch function to reduce permutation losses. Defaults to
None (equivalent to mean). Signature of the func (pwl_set, **kwargs) : (B, n_src!, n_src)
—> (B, n_src!)

* xxkwargs — additional keyword argument that will be passed to the permutation reduce
function.

Returns
tuple — torch . Tensor: The loss corresponding to the best permutation of size (batch,).

torch.LongTensor: The indexes of the best permutations.

58

Chapter 12. Losses & Metrics

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

MIT Copyright (c) 2018 Kaituo XU. See Original code and License.

forward (est_targets, targets, return_est=False, reduce_kwargs=None, **kwargs)
Find the best permutation and return the loss.

Parameters

* est_targets — torch.Tensor. Expected shape [batch, nsrc, *]. The batch of target
estimates.

* targets —torch.Tensor. Expected shape [batch, nsrc, *]. The batch of training targets

e return_est — Boolean. Whether to return the reordered targets estimates (To compute
metrics or to save example).

* reduce_kwargs (dict or None)-—kwargs that will be passed to the pairwise losses
reduce function (perm_reduce).

* xxkwargs — additional keyword argument that will be passed to the loss function.
Returns

* Best permutation loss for each batch sample, average over the batch.
torch.Tensor(loss_value)

* The reordered targets estimates if return_est is True. torch.Tensor of shape [batch,
nsrc, *].

static get_pw_losses (loss_func, est_targets, targets, **kwargs)
Get pair-wise losses between the training targets and its estimate for a given loss function.

Parameters

* loss_func - function with signature (targets, est_targets, **kwargs) The loss function
to get pair-wise losses from.

* est_targets — torch.Tensor. Expected shape [batch, nsrc, *]. The batch of target
estimates.

* targets —torch.Tensor. Expected shape [batch, nsrc, *]. The batch of training targets.
* xxkwargs — additional keyword argument that will be passed to the loss function.

Returns torch.Tensor or size [batch, nsrc, nsrc], losses computed for all permutations of the
targets and est_targets.

This function can be called on a loss function which returns a tensor of size [batch]. There are more

efficient ways to compute pair-wise losses using broadcasting.

static reorder_ source (source, n_src, min_loss_idx)
Reorder sources according to the best permutation.

Parameters
e source (torch. Tensor) — Tensor of shape [batch, n_src, time]
* n_src (int)— Number of sources.

e min_loss_idx (torch.LongTensor) — Tensor of shape [batch], each item is in [0,
n_src!).

Returns torch.Tensor — Reordered sources of shape [batch, n_src, time].

MIT Copyright (c) 2018 Kaituo XU. See Original code and License.

59

https://github.com/kaituoxu/Conv-TasNet/blob/master
https://github.com/kaituoxu/Conv-TasNet/blob/master/LICENSE
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://github.com/kaituoxu/Conv-TasNet/blob/master
https://github.com/kaituoxu/Conv-TasNet/blob/master/LICENSE

asteroid Documentation, Release 0.4.0alpha

class asteroid.losses.SingleSrcPMSQE (window_name="sqrt_hann’, window_weight=1.0,
bark_eq=True, gain_eq=True, sample_rate=16000)
Bases: sphinx.ext.autodoc.importer._MockObject

Computes the Perceptual Metric for Speech Quality Evaluation (PMSQE) as described in [1]. This version is
only designed for 16 kHz (512 length DFT). Adaptation to 8 kHz could be done by changing the parameters
of the class (see Tensorflow implementation). The SLL, frequency and gain equalization are applied in each
sequence independently.

Parameters

* window_name (str) — Select the used window function for the correct factor to be ap-
plied. Defaults to sqrt hanning window. Among [‘rect’, ‘hann’, ‘sqrt_hann’, ‘hamming’,
‘flatTop’].

* window_weight (float, optional)- Correction to the window factor applied.
* bark_eq(bool, optional)— Whether to apply bark equalization.
* gain_eq(bool, optional)— Whether to apply gain equalization.

* sample_rate (int)— Sample rate of the input audio.

References

[1] J.M.Martin, A.M.Gomez, J.A.Gonzalez, A.M.Peinado ‘A Deep Learning Loss Function based on the Per-
ceptual Evaluation of the Speech Quality’, IEEE Signal Processing Letters, 2018. Implemented by Juan M.
Martin. Contact: mdjuamart@ugr.es Copyright 2019: University of Granada, Signal Processing, Multimedia
Transmission and Speech/Audio Technologies (SigMAT) Group.

Note: Inspired on the Perceptual Evaluation of the Speech Quality (PESQ) algorithm, this function consists of
two regularization factors : the symmetrical and asymmetrical distortion in the loudness domain.

Examples

>>> import torch

>>> from asteroid.filterbanks import STFTFB, Encoder, transforms

>>> from asteroid.losses import PITLossWrapper, SingleSrcPMSQE

>>> stft = Encoder (STFTFB (kernel_size=512, n_filters=512, stride=256))
>>> # Usage by itself

>>> ref, est = torch.randn (2, 1, 16000), torch.randn (2, 1, 16000)

>>> ref_spec = transforms.take_mag(stft (ref))

>>> est_spec = transforms.take_mag(stft (est))
>>> loss_func = SingleSrcPMSQE ()
>>> loss_value = loss_func(est_spec, ref_spec)

>>> # Usage with PITLossWrapper

>>> loss_func = PITLossWrapper (SingleSrcPMSQE (), pit_from='pw_pt"')
>>> ref, est = torch.randn (2, 3, 16000), torch.randn (2, 3, 16000)
>>> ref_spec = transforms.take_mag(stft (ref))

>>> est_spec = transforms.take_mag(stft (est))

>>> loss_value = loss_func(ref_spec, est_spec)

bark_freq equalization (ref_bark_spectra, deg_bark_spectra)
This version is applied in the degraded directly.

forward (est_targets, targets, pad_mask=None)

60 Chapter 12. Losses & Metrics

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
mailto:mdjuamart@ugr.es

asteroid Documentation, Release 0.4.0alpha

Args

est_targets (torch.Tensor): Dimensions (B, T, F). Padded degraded power spectrum in time-
frequency domain.

targets (torch.Tensor): Dimensions (B, T, F). Zero-Padded reference power spectrum in time-
frequency domain.

pad_mask (torch.Tensor, optional): Dimensions (B, T, 1). Mask to indicate the padding frames.
Defaults to all ones.

Dimensions B: Number of sequences in the batch. T: Number of time frames. F: Number of frequency
bins.

Returns torch.tensor of shape (B,), wD + 0.309 * wDA

Notes Dimensions (B, F, T) are also supported by SingleStcPMSQE but are less efficient because input
tensors are transposed (not inplace).

Examples

static get_correction_factor (window_name)
Returns the power correction factor depending on the window.

asteroid.losses.SingleSrcNegSTOI

alias of asteroid. losses.stoli.NegSTOILoss

class asteroid.losses.SingleSrcMultiScaleSpectral (n_filters=None, win-

dows_size=None, hops_size=None,
alpha=1.0)
Bases: sphinx.ext.autodoc.importer._MockObject

Measure multi-scale spectral loss as described in [1]
Parameters
e n_filters (Iist)- list containing the number of filter desired for each STFT
* windows_size (11ist) - list containing the size of the window desired for each STFT

* hops_size (11ist) - list containing the size of the hop desired for each STFT

Shape:
est_targets (torch . Tensor): Expected shape [batch, time]. Batch of target estimates.
targets (torch. Tensor): Expected shape [batch, time]. Batch of training targets.

alpha (float) : Weighting factor for the log term

Returns torch.Tensor — with shape [batch]

Examples

>>> import torch

>>> targets = torch.randn (10, 32000)

>>> est_targets = torch.randn (10, 32000)

>>> # Using it by itself on a pair of source/estimate
>>> loss_func = SingleSrcMultiScaleSpectral ()

>>> loss = loss_func(est_targets, targets)

61

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

>>> import torch

>>> from asteroid.losses import PITLossWrapper

>>> targets = torch.randn (10, 2, 32000)

>>> est_targets = torch.randn (10, 2, 32000)

>>> # Using it with PITLossWrapper with sets of source/estimates
>>> loss_func = PITLossWrapper (SingleSrcMultiScaleSpectral(),

>>> pit_from="pw_pt')
>>> loss = loss_func(est_targets, targets)
References

[1] Jesse Engel and Lamtharn (Hanoi) Hantrakul and Chenjie Gu and Adam Roberts DDSP: Differentiable

Digital Signal Processing International Conference on Learning Representations ICLR 2020 $

class asteroid.losses.PairwiseNegSDR (sdr_type, zero_mean=True, take_log=True)
Bases: sphinx.ext.autodoc.importer._MockObject

Base class for pairwise negative SI-SDR, SD-SDR and SNR on a batch.
Parameters

* sdr_type (str) - choose between “snr” for plain SNR, “sisdr” for SI-SDR and “sdsdr”
for SD-SDR [1].

* zero_mean (bool, optional)-by defaultitzeromean the target and estimate before
computing the loss.

* take_log (bool, optional)-— by defaulttheloglO of sdr is returned.

Shape:
est_targets (torch.Tensor): Expected shape [batch, n_src, time]. Batch of target estimates.

targets (torch . Tensor): Expected shape [batch, n_src, time]. Batch of training targets.

Returns torch.Tensor — with shape [batch, n_src, n_src]. Pairwise losses.

Examples

>>> import torch

>>> from asteroid.losses import PITLossWrapper

>>> targets = torch.randn (10, 2, 32000)

>>> est_targets = torch.randn (10, 2, 32000)

>>> loss_func = PITLossWrapper (PairwiseNegSDR("sisdr"),

>>> pit_from="pairwise')
>>> loss = loss_func(est_targets, targets)
References

[1] Le Roux, Jonathan, et al. “SDR half-baked or well done.” IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP) 2019.

asteroid.losses.deep_clustering_ loss (embedding, tgt_index, binary_mask=None)
Compute the deep clustering loss defined in [1].

Parameters

62 Chapter 12. Losses & Metrics

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor

asteroid Documentation, Release 0.4.0alpha

* embedding (torch. Tensor) — Estimated embeddings. Expected shape (batch, fre-
quency x frame, embedding_dim)

* tgt_index (torch. Tensor) — Dominating source index in each TF bin. Expected
shape: [batch, frequency, frame]

* binary mask (torch.Tensor) — VAD in TF plane. Bool or Float. See aster-
oid.filterbanks.transforms.ebased_vad.

Returns rorch.Tensor. Deep clustering loss for every batch sample.

Examples
>>> import torch
>>> from asteroid.losses.cluster import deep_clustering_loss
>>> spk_cnt = 3
>>> embedding = torch.randn (10, 5%400, 20)
>>> targets = torch.LongTensor ([10, 400, 5]).random_(0, spk_cnt)
>>> loss = deep_clustering_loss (embedding, targets)

Reference

[1] Zhong-Qiu Wang, Jonathan Le Roux, John R. Hershey “ALTERNATIVE OBJECTIVE FUNC-
TIONS FOR DEEP CLUSTERING”

Note: Be careful in viewing the embedding tensors. The target indices gt _index are of shape (batch, freq,
frames). Even if the embedding is of shape (batch, freq*frames, emb), the underlying view should be (batch,
freq, frames, emb) and not (batch, frames, freq, emb).

12.1 Permutation invariant training (PIT) made easy

class asteroid.losses.pit_wrapper.PITLossWrapper (loss_func, pit_from="pw_mix’,

perm_reduce=None)
Bases: sphinx.ext.autodoc.importer._MockObject

Permutation invariant loss wrapper.
Parameters
* loss_func - function with signature (targets, est_targets, **kwargs).
* pit_from (st r)— Determines how PIT is applied.

— 'pw_mtx"' (pairwise matrix): loss_func computes pairwise losses and returns a
torch.Tensor of shape (batch,n_sre,n_src). Each element [batch, i, j] corresponds to
the loss between targets[:,i] and est_targets[:, j]

- 'pw_pt"' (pairwise point): loss_func computes the loss for a batch of single source
and single estimates (tensors won’t have the source axis). Output shape : (batch). See
get_pw_losses ().

— ‘“perm_avg’ ‘‘(permutation average): [loss_func computes the average loss for a
given permutations of the sources and estimates. Output shape : (batch). See
best_perm from perm avg_loss ().

In terms of efficiency, 'perm_avg' is the least efficicient.

12.1. Permutation invariant training (PIT) made easy 63

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str

asteroid Documentation, Release 0.4.0alpha

* perm_reduce (Callable) — torch function to reduce permutation losses. Defaults to
None (equivalent to mean). Signature of the func (pwl_set, **kwargs) : (B, n_src!, n_src)
—> (B, n_src!). perm_reduce can receive **kwargs during forward using the reduce_kwargs
argument (dict). If those argument are static, consider defining a small function or using
Sfunctools.partial. Only used in ‘pw_mitx’ and ‘pw_pt’ pit_from modes.

For each of these modes, the best permutation and reordering will be automatically computed.

Examples

>>> import torch

>>> from asteroid.losses import pairwise_neg_sisdr

>>> gources = torch.randn (10, 3, 16000)

>>> est_sources = torch.randn (10, 3, 16000)

>>> # Compute PIT loss based on palirwise losses

>>> loss_func = PITLossWrapper (pairwise_neg_sisdr, pit_from='pw_mtx')
>>> loss_val = loss_func(est_sources, sources)

>>>

>>> # Using reduce

>>> def reduce (perm_loss, src):

>>> weighted = perm_loss % src.norm(dim=-1, keepdim=True)

>>> return torch.mean (weighted, dim=-1)

>>>

>>> loss_func = PITLossWrapper (pairwise_neg_sisdr, pit_from='pw_mtx',
>>> perm_reduce=reduce)

>>> reduce_kwargs = {'src': sources}

>>> loss_val = loss_func(est_sources, sources,

>>> reduce_kwargs=reduce_kwargs)

static best_perm from perm_avg_ loss (loss_func, est_targets, targets, **kwargs)
Find best permutation from loss function with source axis.

Parameters

* loss_func - function with signature (targets, est_targets, **kwargs) The loss function
batch losses from.

* est_targets — torch.Tensor. Expected shape [batch, nsrc, *]. The batch of target
estimates.

* targets —torch.Tensor. Expected shape [batch, nsrc, *]. The batch of training targets.

* xxkwargs — additional keyword argument that will be passed to the loss function.
Returns

tuple — torch.Tensor: The loss corresponding to the best permutation of size (batch,).

torch.LongTensor: The indexes of the best permutations.

static find_best_perm (pair_wise_losses, n_src, perm_reduce=None, **kwargs)
Find the best permutation, given the pair-wise losses.

Parameters

* pair_wise_losses (torch.Tensor) - Tensor of shape [batch, n_src, n_src]. Pair-
wise losses.

* n_src (int)— Number of sources.

64 Chapter 12. Losses & Metrics

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int

asteroid Documentation, Release 0.4.0alpha

* perm_reduce (Callable) — torch function to reduce permutation losses. Defaults to
None (equivalent to mean). Signature of the func (pwl_set, **kwargs) : (B, n_src!, n_src)
—> (B, n_src!)

* xxkwargs — additional keyword argument that will be passed to the permutation reduce
function.

Returns
tuple — torch . Tensor: The loss corresponding to the best permutation of size (batch,).
torch.LongTensor: The indexes of the best permutations.
MIT Copyright (c) 2018 Kaituo XU. See Original code and License.

forward (est_targets, targets, return_est=False, reduce_kwargs=None, **kwargs)
Find the best permutation and return the loss.

Parameters

* est_targets — torch.Tensor. Expected shape [batch, nsrc, *]. The batch of target
estimates.

* targets —torch.Tensor. Expected shape [batch, nsrc, *]. The batch of training targets

e return_est — Boolean. Whether to return the reordered targets estimates (To compute
metrics or to save example).

* reduce_kwargs (dict or None)-kwargs that will be passed to the pairwise losses
reduce function (perm_reduce).

* xxkwargs — additional keyword argument that will be passed to the loss function.
Returns

* Best permutation loss for each batch sample, average over the batch.
torch.Tensor(loss_value)

* The reordered targets estimates if return_est is True. torch.Tensor of shape [batch,
nsrc, *].

static get_pw_losses (loss_func, est_targets, targets, **kwargs)
Get pair-wise losses between the training targets and its estimate for a given loss function.

Parameters

* loss_func - function with signature (targets, est_targets, **kwargs) The loss function
to get pair-wise losses from.

* est_targets — torch.Tensor. Expected shape [batch, nsrc, *]. The batch of target
estimates.

* targets —torch.Tensor. Expected shape [batch, nsrc, *]. The batch of training targets.
* xxkwargs — additional keyword argument that will be passed to the loss function.

Returns torch.Tensor or size [batch, nsrc, nsrc], losses computed for all permutations of the
targets and est_targets.

This function can be called on a loss function which returns a tensor of size [batch]. There are more
efficient ways to compute pair-wise losses using broadcasting.

static reorder_ source (source, n_src, min_loss_idx)
Reorder sources according to the best permutation.

Parameters

12.1. Permutation invariant training (PIT) made easy 65

https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://github.com/kaituoxu/Conv-TasNet/blob/master
https://github.com/kaituoxu/Conv-TasNet/blob/master/LICENSE
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

asteroid Documentation, Release 0.4.0alpha

* source (torch. Tensor)— Tensor of shape [batch, n_src, time]
e n_src (int) - Number of sources.

* min_loss_idx (torch.LongTensor) — Tensor of shape [batch], each item is in [0,
n_src!).

Returns torch.Tensor — Reordered sources of shape [batch, n_src, time].

MIT Copyright (c) 2018 Kaituo XU. See Original code and License.

12.2 Available loss functions

PITLossWrapper supports three types of loss function. For “easy” losses, we implement the three types (pairwise
point, single-source loss and multi-source loss). For others, we only implement the single-source loss which can be
aggregated into both PIT and nonPIT training.

12.2.1 MSE

asteroid.losses.mse.PairwiseMSE (*args, **kwargs)
Measure pairwise mean square error on a batch.
Shape:
est_targets (torch . Tensor): Expected shape [batch, nsrec, *]. The batch of target estimates.

targets (torch . Tensor): Expected shape [batch, nsrc, *]. The batch of training targets

Returns torch.Tensor — with shape [batch, nsrc, nsrc]

Examples

>>> import torch

>>> from asteroid.losses import PITLossWrapper

>>> targ