

Asteroid: Audio source separation on Steroids

[image: _images/asteroid_logo_dark.png]
Asteroid is a Pytorch-based audio source separation toolkit that enables fast
experimentation on common datasets. It comes with a source code that supports a
large range of datasets and architectures, and a set of recipes to reproduce some important papers.

Start here

	What is Asteroid?

	Installation

Notebooks and Tutorials

	Getting started with Asteroid [http://colab.research.google.com/github/mpariente/asteroid/blob/master/notebooks/00_AsteroidGettingStarted.ipynb]

	Introduction and Overview [http://colab.research.google.com/github/mpariente/asteroid/blob/master/notebooks/01_AsteroidOverview.ipynb]

	Understanding the Filterbank API [http://colab.research.google.com/github/mpariente/asteroid/blob/master/notebooks/02_Filterbank.ipynb]

	Our PITLossWrapper explained [http://colab.research.google.com/github/mpariente/asteroid/blob/master/notebooks/03_PITLossWrapper.ipynb]

	Processing large wav files [http://colab.research.google.com/github/mpariente/asteroid/blob/master/notebooks/04_ProcessLargeAudioFiles.ipynb]

	Community: Numpy vs. Asteroid STFT [https://colab.research.google.com/drive/1BDNQZBJCDcwQhSguf3XBE7ff2KXhWu_j]

Asteroid

	What is a recipe?

	Datasets and tasks

	Training and Evaluation

	Pretrained models

	Command-line interface

	FAQ

Package reference

	PyTorch Datasets

	Filterbank API

	DNN building blocks

	Models

	Losses & Metrics

	Lightning Wrapper

	Optimizers & Schedulers

	DSP Modules

	Utils

Community

	Asteroid High-Level Contribution Guide

	How to contribute

Indices and tables

	Index

	Module Index

	Search Page

What is Asteroid?

Asteroid is a PyTorch-based audio source separation toolkit.

The main goals of Asteroid are:

	Gather a wider community around audio source separation by lowering the barriers to entry.

	Promote reproducibility by replicating important research papers.

	Automatize most engineering and make way for research.

	Simplify model sharing to reduce compute costs and carbon footprint.

So, how do we do that? We aim to provide

	PyTorch Dataset for common datasets.

	Ready-to-use state-of-the art source separation architectures in native PyTorch.

	Configurable recipes from data preparation to evaluation.

	Pretrained models for a wide variety of tasks and architectures.

Who is it for?

Asteroid has several target usage:

	Use asteroid in your own code, as a package.

	Use available recipes to build your own separation model.

	Use pretrained models to process your files.

	Hit the ground running with your research ideas!

Want to know more?

	Visit our webpage [https://asteroid-team.github.io/]

	Read our paper [https://arxiv.org/abs/2005.04132]

	Watch the presentation video [https://www.youtube.com/watch?v=imnZxQwuNcg]

	`Check how we won the PyTorch Hackathon 2020 !<https://devpost.com/software/asteroid-the-pytorch-based-source-separation-toolkit>`__

Installation

By following the instructions below, first install PyTorch and then
Asteroid (using either pip/dev install). We recommend the development
installation for users likely to modify the source code.

CUDA and PyTorch

Asteroid is based on PyTorch.
To run Asteroid on GPU, you will need a CUDA-enabled PyTorch installation.
Visit this site for the instructions: https://pytorch.org/get-started/locally/.

Pip

Asteroid is regularly updated on PyPI, install the latest stable version with:

pip install asteroid

Development installation

For development installation, you can fork/clone the GitHub repo and locally install it with pip:

git clone https://github.com/mpariente/asteroid
cd asteroid
pip install -e .

This is an editable install (-e flag), it means that source code changes (or branch switching) are
automatically taken into account when importing asteroid.

You can also use conda env create -f environment.yml to create a Conda env directly.

What is a recipe?

A recipe is a set of scripts that use Asteroid to build a
source separation system.
Each directory corresponds to a dataset and each subdirectory
corresponds to a system build on this dataset.
You can start by reading this recipe to
get familiar with them.

How is it organized?

Most recipes are organized as follows. When you clone the repo,
data, exp and logs won’t be there yet, it’s normal.

├── data/
├── exp/
├── logs/
├── local/
│ ├── convert_sphere2wav.sh
│ ├── prepare_data.sh
│ ├── conf.yml
│ └── preprocess_wham.py
├── utils/
│ ├── parse_options.sh
│ └── prepare_python_env.sh
├── run.sh
├── train.py
├── model.py
└── eval.py

A small graph might help.

[image: alt text]

How does it work?

Let’s try to summarize how recipes work :

	There is a master file, run.sh, from which all the steps are
ran (install dependencies, download data, create dataset, train a model
evaluate it and so on..). This recipe style is borrowed from
Kaldi [https://github.com/kaldi-asr/kaldi] and ESPnet [https://github.com/espnet/espnet].

	You usually have to change some variables in the top of
the file (comments are around it to help you) like data directory,
python path etc..

	This script is controlled by several arguments. Among them, stage controls
from where do you start the script. You already generated the data? No need
to do it again, set stage=3!

	All steps until training are dataset-specific and the corresponding
scripts are stored in ./local

	The training and evaluation scripts are then called from run.sh

	There is a script, model.py, where the model should be defined
along with the System subclass used for training (if needed).

	We wrap the model definition in one function (make_model_and_optimizer).
The function receives a dictionary which is also saved in the
experiment folder. This make checkpoint restoring easy without
any additional constraints.

	We also write a function to load the best model (load_best_model)
after training. This is useful to load the model several
time (evaluation, separation of new examples…).

	The arguments flow through bash/python/yaml in a specific way, which
was designed by us and suits our use-cases until now:

	The very first step is the local/conf.yml file where is a
hierarchical configuration file,

	On the python side : This file is parsed as a dictionary of
dictionary in training.py. From this dict, we create an argument
parser which can accept all the second-level keys from the
dictionary (so second-level keys should be unique) as arguments
and has the default values from the conf.yml file.

	On the bash side: we also parse arguments from the command line
(using utils/parse_options.sh). The arguments above the line
. utils/parse_options.sh can be parsed, the rest are fixed.
Most arguments will be passed to the training script. Others control the
data preparation, GPU usage etc…

	In light of all this the config file should have sensible default
values that shouldn’t be modified by hand much. The quickly configurable part
of the recipe are added to run.sh (you want to experiment with the batch
size, add an argument in and pass it to python. If you want it fixed,
no need to put it in bash, the conf.yml file keeps it for you.)
This makes it possible to directly identify the important parts
of the experiment, without reading lots of lines of
argparser or bash arguments.

	Some more notes :

	After the first execution, you can go and change stage in run.sh to
avoid redoing all the steps everytime.

	To use GPUs for training, run run.sh --id 0,1 where 0 and 1 are the
GPUs you want to use, training should automatically take advantage of both GPUs.

	By default, a random id is generated for each run, you can also add a
tag to name the experiments how you want. For example
run.sh --tag with_cool_loss will save all results to
exp/train_{arch_name}_with_cool_loss. You’ll also find the
corresponding log file in logs/train_{arch_name}_with_cool_loss.log.

	Model loading methods suppose that the model architecture is the same
as when training was performed. Be careful when you change it.

Again, you have a doubt, a question, a suggestion or a request,
open an issue [https://github.com/mpariente/asteroid/issues/new] or join the slack [https://join.slack.com/t/asteroid-dev/shared_invite/zt-cn9y85t3-QNHXKD1Et7qoyzu1Ji5bcA], we’ll be happy
to help you.

Datasets and tasks

The following is a list of supported datasets, sorted by task.
If you’re more interested in the corresponding PyTorch Dataset, see
this page

Speech separation

wsj0-2mix dataset

wsj0-2mix is a single channel speech separation dataset base on WSJ0.
Three speaker extension (wsj0-3mix) is also considered here.

Reference

@article{Hershey_2016,
 title={Deep clustering: Discriminative embeddings for segmentation and separation},
 ISBN={9781479999880},
 url={http://dx.doi.org/10.1109/ICASSP.2016.7471631},
 DOI={10.1109/icassp.2016.7471631},
 journal={2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
 publisher={IEEE},
 author={Hershey, John R. and Chen, Zhuo and Le Roux, Jonathan and Watanabe, Shinji},
 year={2016},
}

WHAM dataset

WHAM! is a noisy single-channel speech separation dataset based on WSJ0.
It is a noisy extension of wsj0-2mix.

More info here [http://wham.whisper.ai/].

References

@inproceedings{WHAMWichern2019,
 author={Gordon Wichern and Joe Antognini and Michael Flynn and Licheng Richard Zhu and Emmett McQuinn and Dwight Crow and Ethan Manilow and Jonathan Le Roux},
 title={{WHAM!: extending speech separation to noisy environments}},
 year=2019,
 booktitle={Proc. Interspeech},
 pages={1368--1372},
 doi={10.21437/Interspeech.2019-2821},
 url={http://dx.doi.org/10.21437/Interspeech.2019-2821}
}

WHAMR dataset

WHAMR! is a noisy and reverberant single-channel speech separation dataset
based on WSJ0.
It is a reverberant extension of WHAM!.

Note that WHAMR! can synthesize binaural recordings, but we only consider
the single channel for now.

More info here [http://wham.whisper.ai/].
References

@misc{maciejewski2019whamr,
 title={WHAMR!: Noisy and Reverberant Single-Channel Speech Separation},
 author={Matthew Maciejewski and Gordon Wichern and Emmett McQuinn and Jonathan Le Roux},
 year={2019},
 eprint={1910.10279},
 archivePrefix={arXiv},
 primaryClass={cs.SD}
}

LibriMix dataset

The LibriMix dataset is an open source dataset
derived from LibriSpeech dataset. It’s meant as an alternative and complement
to WHAM.

More info here [https://github.com/JorisCos/LibriMix].

References

@misc{cosentino2020librimix,
 title={LibriMix: An Open-Source Dataset for Generalizable Speech Separation},
 author={Joris Cosentino and Manuel Pariente and Samuele Cornell and Antoine Deleforge and Emmanuel Vincent},
 year={2020},
 eprint={2005.11262},
 archivePrefix={arXiv},
 primaryClass={eess.AS}
}

Kinect-WSJ dataset

Kinect-WSJ is a reverberated, noisy version of the WSJ0-2MIX dataset.
Microphones are placed on a linear array with spacing between the devices
resembling that of Microsoft Kinect ™, the device used to record the CHiME-5 dataset.
This was done so that we could use the real ambient noise captured as part of CHiME-5 dataset.
The room impulse responses (RIR) were simulated for a sampling rate of 16,000 Hz.

Requirements

	wsj_path : Path to precomputed wsj-2mix dataset. Should contain the folder 2speakers/wav16k/.
If you don’t have wsj_mix dataset, please create it using the scripts in egs/wsj0_mix

	chime_path : Path to chime-5 dataset. Should contain the folders train, dev and eval

	dihard_path : Path to dihard labels. Should contain *.lab files for the train and dev set

References

 Training and Evaluation

Training and Evaluation

Training and evaluation are the two essential parts of the recipes.
For training, we offer a thin wrapper around
PyTorchLightning [https://github.com/PyTorchLightning/pytorch-lightning] that
seamlessly enables distributed training, experiment logging and more,
without sacrificing flexibility.
For evaluation we released pb_bss_eval on PyPI, which is the evaluation
part of pb_bss [https://github.com/fgnt/pb_bss]. All the credit goes to the
original authors from the Paderborn University.

Training with PyTorchLightning

First, have a look here [https://pytorch-lightning.readthedocs.io/en/latest/introduction_guide.html]
for an overview of PyTorchLightning.
As you saw, the LightningModule is a central class of PyTorchLightning
where a large part of the research-related logic lives.
Instead of subclassing it everytime, we use System, a thin wrapper
that separately gathers the essential parts of every deep learning project:

	A model

	Optimizer

	Loss function

	Train/val data

class System(pl.LightningModule):
 def __init__(self, model, optimizer, loss_func, train_loader, val_loader):
 ...

 def common_step(self, batch):
 """ common_step is the method that'll be called at both train/val time. """
 inputs, targets = batch
 est_targets = self(inputs)
 loss = self.loss_func(est_targets, targets)
 return loss

Only overwriting common_step will often be enough to obtain a desired
behavior, while avoiding boilerplate code.
Then, we can use the native PyTorchLightning Trainer to train the models.

Evaluation

Asteroid’s function compute_metrics that calls pb_bss_eval
is used to compute the following common source separation metrics:

	SDR / SIR / SAR

	STOI

	PESQ

	SI-SDR

 Pretrained models

Pretrained models

Asteroid provides pretrained models through the
Asteroid community [https://zenodo.org/communities/asteroid-models] in Zenodo.
Have a look at the Zenodo page to choose which model you want to use.

Enjoy having pretrained models? Please share your models if you train some,
we made it simple with the asteroid-upload CLI, check the next sections.

Using them

Loading a pretrained model is super simple!

from asteroid.models import ConvTasNet
model = ConvTasNet.from_pretrained('mpariente/ConvTasNet_WHAM!_sepclean')

Use the search page [https://zenodo.org/communities/asteroid-models/search]
if you want to narrow your search.

You can also load it with Hub

from torch import hub
model = hub.load('mpariente/asteroid', 'conv_tasnet', 'mpariente/ConvTasNet_WHAM!_sepclean')

Model caching

When using a from_pretrained method, the model is downloaded and cached.
The cache directory is either the value in the $ASTEROID_CACHE environment variable,
or ~/.cache/torch/asteroid.

Share your models

At the end of each sharing-enabled recipe, all the necessary infos are gathered into a file, the only thing
that’s left to do is to run

asteroid-upload exp/your_exp_dir/publish_dir --uploader "Name Here"

Ok, not really. First you need to register to Zenodo [https://zenodo.org/] (Sign in with GitHub: ok),
create a token [https://zenodo.org/account/settings/applications/tokens/new/] and use it with
the --token option of the CLI, or by setting the ACCESS_TOKEN environment variable.
If you plan to upload more models (and you should :innocent:), you can fill in your infos in
uploader_info.yml at the root, like this.

uploader: Manuel Pariente
affiliation: INRIA
git_username: mpariente
token: TOKEN_HERE

Note about licenses

All Asteroid’s pretrained models are shared under the
Attribution-ShareAlike 3.0 (CC BY-SA 3.0) [https://creativecommons.org/licenses/by-sa/3.0/]
license. This means that models are released under the same license as the original
training data. If any non-commercial data is used during training (wsj0, WHAM’s noises etc..), the
models are non-commercial use only.
This is indicated in the bottom of the corresponding Zenodo page (ex: here [https://zenodo.org/record/3903795#collapseTwo]).

 Command-line interface

Command-line interface

Inference

asteroid-infer

Example

asteroid-infer "mpariente/ConvTasNet_WHAM!_sepclean" --files myaudio.wav --resample --ola-window 8000 --ola-hop 4000

Reference

System Message: ERROR/6 (/home/docs/checkouts/readthedocs.org/user_builds/asteroid/checkouts/v0.4.0/docs/source/cli.rst, line 21)

Command 'asteroid-infer --help' failed: [Errno 2] No such file or directory: 'asteroid-infer': 'asteroid-infer'

Publishing models

asteroid-upload

Reference

System Message: ERROR/6 (/home/docs/checkouts/readthedocs.org/user_builds/asteroid/checkouts/v0.4.0/docs/source/cli.rst, line 33)

Command 'asteroid-upload --help' failed: [Errno 2] No such file or directory: 'asteroid-upload': 'asteroid-upload'

asteroid-register-sr

Reference

System Message: ERROR/6 (/home/docs/checkouts/readthedocs.org/user_builds/asteroid/checkouts/v0.4.0/docs/source/cli.rst, line 41)

Command 'asteroid-register-sr --help' failed: [Errno 2] No such file or directory: 'asteroid-register-sr': 'asteroid-register-sr'

 FAQ

FAQ

My results are worse than the ones reported in the README, why?

There are few possibilities here:

1. Your data is wrong. We had this examples with wsj0-mix, WHAM etc..
where wv2 was used instead of wv1 to generate the data. This was fixed in
#166 [https://github.com/mpariente/asteroid/pull/166]. Chances are there is a pretrained model available for the given dataset,
run the evaluation with it. If your results are different, it’s a data problem.
Refs: #164 [https://github.com/mpariente/asteroid/issues/164],
#165 [https://github.com/mpariente/asteroid/issues/165] and #188 [https://github.com/mpariente/asteroid/issues/188].

2. You stopped training too early. We’ve seen this happen, specially with DPRNN.
Be sure that your training/validation losses are completely flat at the end of training.

[image: Typical convergence graph]

3. If it’s not both, there is a real bug and we’re happy you caught it!
Please, open an issue with your torch/pytorch_lightning/asteroid versions to let us know.

How long does it take to train a model?

Need a log here.

Can I use the pretrained models for commercial purposes?

Not always. See the note on pretrained models Licenses Note about licenses

Separated audio is really bad, what is happening?

There are several possible cause to this, a common one is clipping.

1. When training with scale invariant losses (e.g. SI-SNR) the audio output can be
unbounded. However, waveform values should be normalized to [-1, 1] range before saving,
otherwise they will be clipped.
See Clipping on Wikipedia [https://en.wikipedia.org/wiki/Clipping_(audio)] and
issue #250 [https://github.com/mpariente/asteroid/issues/250]

2. As all supervised learning approaches, source separation can suffer from
generalization error when evaluated on unseen data. If your model works well
on data similar to your training data but doesn’t work on real data, that’s probably why.
More about this on Wikipedia [https://en.wikipedia.org/wiki/Generalization_error].

 PyTorch Datasets

PyTorch Datasets

This page lists the supported datasets and their corresponding
PyTorch’s Dataset class. If you’re interested in the datasets more
than in the code, see this page.

LibriMix

Wsj0mix

WHAM!

WHAMR!

SMS-WSJ

KinectWSJMix

DNSDataset

MUSDB18

DAMP-VSEP

FUSS

AVSpeech

 Filterbank API

Filterbank API

Filterbank, Encoder and Decoder

Learnable filterbanks

Free

Analytic Free

Parameterized Sinc

Fixed filterbanks

STFT

MelGram

MPGT

Transforms

Griffin-Lim and MISI

Complex transforms

 DNN building blocks

DNN building blocks

Convolutional blocks

Recurrent blocks

Attention blocks

Norms

Complex number support

 Models

Models

Base classes

Ready-to-use models

Publishing models

 Losses & Metrics

Losses & Metrics

Permutation invariant training (PIT) made easy

Asteroid supports regular Permutation Invariant Training (PIT), it’s extension
using Sinkhorn algorithm (SinkPIT) as well as Mixture Invariant Training (MixIT).

PIT

MixIT

SinkPIT

Available loss functions

PITLossWrapper supports three types of loss function. For “easy” losses,
we implement the three types (pairwise point, single-source loss and multi-source loss).
For others, we only implement the single-source loss which can be aggregated
into both PIT and nonPIT training.

MSE

SDR

PMSQE

STOI

MultiScale Spectral Loss

Deep clustering (Affinity) loss

Computing metrics

 Lightning Wrapper

Lightning Wrapper

As explained in Training and Evaluation, Asteroid provides a thin wrapper
on the top of PyTorchLightning [https://github.com/PyTorchLightning/pytorch-lightning]
for training your models.

 Optimizers & Schedulers

Optimizers & Schedulers

Optimizers

Asteroid relies on torch_optimizer [https://github.com/jettify/pytorch-optimizer] and
torch for optimizers.
We provide a simple get method that retrieves optimizers from string,
which makes it easy to specify optimizers from the command line.

Here is a list of supported optimizers, retrievable from string:

	AccSGD

	AdaBound

	AdaMod

	DiffGrad

	Lamb

	NovoGrad

	PID

	QHAdam

	QHM

	RAdam

	SGDW

	Yogi

	Ranger

	RangerQH

	RangerVA

	Adam

	RMSprop

	SGD

	Adadelta

	Adagrad

	Adamax

	AdamW

	ASG

Schedulers

Asteroid provides step-wise learning schedulers, integrable to
pytorch-lightning via System.

 DSP Modules

DSP Modules

LambdaOverlapAdd

DualPath Processing

Mixture Consistency

VAD

Delta Features

 Utils

Utils

Parser utils

Asteroid has its own argument parser (built on argparse) that handles
dict-like structure, created from a config YAML file.

Torch utils

Hub utils

Generic utils

 Asteroid High-Level Contribution Guide

Asteroid High-Level Contribution Guide

Asteroid is a Pytorch-based audio source separation toolkit that enables fast
experimentation on common datasets.

The Asteroid Contribution Process

The Asteroid development process involves a healthy amount of open
discussions between the core development team and the community.

Asteroid operates similar to most open source projects on GitHub.
However, if you’ve never contributed to an open source project before,
here is the basic process.

	Figure out what you’re going to work on. The majority of open
source contributions come from people scratching their own itches.
However, if you don’t know what you want to work on, or are just
looking to get more acquainted with the project, here are some tips
for how to find appropriate tasks:

	Look through the issue
tracker [https://github.com/mpariente/asteroid/issues/] and see if
there are any issues you know how to fix. Issues that are
confirmed by other contributors tend to be better to investigate.

	Join us on Slack and let us know you’re interested in getting to
know Asteroid. We’re very happy to help out researchers and
partners get up to speed with the codebase.

	Figure out the scope of your change and reach out for design
comments on a GitHub issue if it’s large. The majority of pull
requests are small; in that case, no need to let us know about what
you want to do, just get cracking. But if the change is going to be
large, it’s usually a good idea to get some design comments about it
first.

	If you don’t know how big a change is going to be, we can help you
figure it out! Just post about it on issues or Slack.

	Some feature additions are very standardized; for example, lots of
people add new datasets or architectures to Asteroid. Design
discussion in these cases boils down mostly to, “Do we want this
dataset/architecture?” Giving evidence for its utility, e.g., usage
in peer reviewed papers, or existence in other frameworks, helps a
bit when making this case.

	Core changes and refactors can be quite difficult to coordinate,
as the pace of development on Asteroid master is quite fast.
Definitely reach out about fundamental or cross-cutting changes;
we can often give guidance about how to stage such changes into
more easily reviewable pieces.

	Code it out!

	See the technical guide and read the code for advice for working with
Asteroid in a technical form.

	Open a pull request.

	If you are not ready for the pull request to be reviewed, tag it
with [WIP]. We will ignore it when doing review passes. If you are
working on a complex change, it’s good to start things off as WIP,
because you will need to spend time looking at CI results to see
if things worked out or not.

	Find an appropriate reviewer for your change. We have some folks
who regularly go through the PR queue and try to review
everything, but if you happen to know who the maintainer for a
given subsystem affected by your patch is, feel free to include
them directly on the pull request.

	Iterate on the pull request until it’s accepted!

	We’ll try our best to minimize the number of review roundtrips and
block PRs only when there are major issues. For the most common
issues in pull requests, take a look at Common Mistakes.

	Once a pull request is accepted and CI is passing, there is
nothing else you need to do; we will merge the PR for you.

Getting Started

Proposing new features

New feature ideas are best discussed on a specific issue. Please include
as much information as you can, any accompanying data, and your proposed
solution. The Asteroid team and community frequently reviews new issues
and comments where they think they can help. If you feel confident in
your solution, go ahead and implement it.

Reporting Issues

If you’ve identified an issue, first search through the list of
existing issues [https://github.com/mpariente/asteroid/issues] on the
repo. If you are unable to find a similar issue, then create a new one.
Supply as much information you can to reproduce the problematic
behavior. Also, include any additional insights like the behavior you
expect.

Implementing Features or Fixing Bugs

If you want to fix a specific issue, it’s best to comment on the
individual issue with your intent. However, we do not lock or assign
issues except in cases where we have worked with the developer before.
It’s best to strike up a conversation on the issue and discuss your
proposed solution. We can provide guidance that saves you time.

Adding Tutorials

Most our tutorials come from our team but we are very open to
additional contributions. Have a notebook leveraging Asteroid? Open a PR
to let us know!

Improving Documentation & Tutorials

We aim to produce high quality documentation and tutorials. On some
occasions that content includes typos or bugs. If you find something you
can fix, send us a pull request for consideration.

Take a look at the Documentation section to learn how our system
works.

Participating in online discussions

You can find active discussions happening on our
slack workspace [https://join.slack.com/t/asteroid-dev/shared_invite/zt-cn9y85t3-QNHXKD1Et7qoyzu1Ji5bcA].

Submitting pull requests to fix open issues

You can view a list of all open issues
here [https://github.com/mpariente/asteroid/issues]. Commenting on an
issue is a great way to get the attention of the team. From here you can
share your ideas and how you plan to resolve the issue.

For more challenging issues, the team will provide feedback and
direction for how to best solve the issue.

If you’re not able to fix the issue itself, commenting and sharing
whether you can reproduce the issue can be useful for helping the team
identify problem areas.

Reviewing open pull requests

We appreciate your help reviewing and commenting on pull requests. Our
team strives to keep the number of open pull requests at a manageable
size, we respond quickly for more information if we need it, and we
merge PRs that we think are useful. However, additional eyes on pull requests
is always appreciated.

Improving code readability

Improve code readability helps everyone.
We plan to integrate black/DeepSource in the CI process, but readability
issues can still persist and we’ll welcome your corrections.

Adding test cases to make the codebase more robust

Additional test coverage is always appreciated.

Promoting Asteroid

Your use of Asteroid in your projects, research papers, write ups, blogs,
or general discussions around the internet helps to raise awareness for
Asteroid and our growing community. Please reach out to
us [http://mailto:pariente.mnl@gmail.com/]
for support.

Triaging issues

If you feel that an issue could benefit from a particular tag or level
of complexity comment on the issue and share your opinion. If an you
feel an issue isn’t categorized properly comment and let the team know.

About open source development

If this is your first time contributing to an open source project, some
aspects of the development process may seem unusual to you.

	There is no way to “claim” issues. People often want to “claim”
an issue when they decide to work on it, to ensure that there isn’t
wasted work when someone else ends up working on it. This doesn’t
really work too well in open source, since someone may decide to work
on something, and end up not having time to do it. Feel free to give
information in an advisory fashion, but at the end of the day, we
will take running code and rough consensus.

	There is a high bar for new functionality that is added. Unlike
in a corporate environment, where the person who wrote code
implicitly “owns” it and can be expected to take care of it in the
beginning of its lifetime, once a pull request is merged into an open
source project, it immediately becomes the collective responsibility
of all maintainers on the project. When we merge code, we are saying
that we, the maintainers, are able to review subsequent changes and
make a bugfix to the code. This naturally leads to a higher standard
of contribution.

Common Mistakes To Avoid

	Did you add tests? (Or if the change is hard to test, did you
describe how you tested your change?)

	We have a few motivations for why we ask for tests:

	to help us tell if we break it later

	to help us tell if the patch is correct in the first place
(yes, we did review it, but as Knuth says, “beware of the
following code, for I have not run it, merely proven it
correct”)

	When is it OK not to add a test? Sometimes a change can’t be
conveniently tested, or the change is so obviously correct (and
unlikely to be broken) that it’s OK not to test it. On the
contrary, if a change is seems likely (or is known to be likely)
to be accidentally broken, it’s important to put in the time to
work out a testing strategy.

	Is your PR too long? It’s easier for us to review and merge small PRs.
Difficulty of reviewing a PR scales nonlinearly with its size.
You can try to split it up if possible, else it helps if there is a complete
description of the contents of the PR: it’s easier to review code
if we know what’s inside!

	Comments for subtle things? In cases where behavior of your code
is nuanced, please include extra comments and documentation to allow
us to better understand the intention of your code.

	Did you add a hack? Sometimes a hack is the right answer. But
usually we will have to discuss it.

	Do you want to touch a very core component? In order to prevent
major regressions, pull requests that touch core components receive
extra scrutiny. Make sure you’ve discussed your changes with the team
before undertaking major changes.

	Want to add a new feature? If you want to add new features,
comment your intention on the related issue. Our team tries to
comment on and provide feedback to the community. It’s better to have
an open discussion with the team and the rest of the community prior
to building new features. This helps us stay aware of what you’re
working on and increases the chance that it’ll be merged.

	Did you touch unrelated code to the PR? To aid in code review,
please only include files in your pull request that are directly
related to your changes.

Frequently asked questions

	How can I contribute as a reviewer? There is lots of value if
community developer reproduce issues, try out new functionality, or
otherwise help us identify or troubleshoot issues. Commenting on
tasks or pull requests with your environment details is helpful and
appreciated.

	CI tests failed, what does it mean? Maybe you need to merge with
master or rebase with latest changes. Pushing your changes should
re-trigger CI tests. If the tests persist, you’ll want to trace
through the error messages and resolve the related issues.

Attribution

This Contribution Guide is adapted from PyTorch’s Contribution Guide available
here [https://github.com/pytorch/pytorch/blob/master/docs/source/community/contribution_guide.rst].

 How to contribute

How to contribute

The general way to contribute to Asteroid is to fork the main
repository on GitHub:

	Fork the main repo [https://github.com/mpariente/asteroid] and git clone it.

	Make your changes, test them, commit them and push them to your fork.

	You can open a pull request on GitHub when you’re satisfied.

Things don’t need to be perfect for PRs to be opened.

If you made changes to the source code, you’ll want to try them out without
installing asteroid everytime you change something.
To do that, install asteroid in develop mode either with pip
pip install -e .[tests] or with python python setup.py develop.

To avoid formatting roundtrips in PRs, Asteroid relies on ``black` <https://github.com/psf/black>`_
and ``pre-commit-hooks` <https://github.com/pre-commit/pre-commit-hooks>`_ to handle formatting
for us. You’ll need to install requirements.txt and install git hooks with
pre-commit install.

Here is a summary:

Install
git clone your_fork_url
cd asteroid
pip install -r requirements.txt
pip install -e .
pre-commit install # To run black before commit

Make your changes
Test them locally
Commit your changes
Push your changes
Open a PR!

Source code contributions

All contributions to the source code of asteroid should be documented
and unit-tested.
See here to run the tests with coverage reports.
Docstrings follow the Google format [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html], have a look at other
docstrings in the codebase for examples. Examples in docstrings can
be bery useful, don’t hesitate to add some!

Writing new recipes.

Most new recipes should follow the standard format that is described
here. We are not dogmatic about it, but another organization should
be explained and motivated.
We welcome any recipe on standard or new datasets, with standard or new
architectures. You can even link a paper submission with a PR number
if you’d like!

Improving the docs.

If you found a typo, think something could be more explicit etc…
Improving the documentation is always welcome. The instructions to install
dependencies and build the docs can be found here.
Docstrings follow the Google format [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html], have a look at other
docstrings in the codebase for examples.

Coding style

We use pre-commit hooks to format the code using
black.
The code is checked for black- and flake8- compliance on every commit with
GitHub actions. Remember, continuous integration is not here to be all green,
be to help us see where to improve !

If you have any question, open an issue [https://github.com/mpariente/asteroid/issues/new] or join the slack [https://join.slack.com/t/asteroid-dev/shared_invite/zt-cn9y85t3-QNHXKD1Et7qoyzu1Ji5bcA],
we’ll be happy to help you.

 Index

Index

 Community

Community

 asteroid.complex_nn module

asteroid.complex_nn module

 asteroid.data.avspeech_dataset module

asteroid.data.avspeech_dataset module

 asteroid.data.dampvsep_dataset module

asteroid.data.dampvsep_dataset module

 asteroid.data.dns_dataset module

asteroid.data.dns_dataset module

 asteroid.data.fuss_dataset module

asteroid.data.fuss_dataset module

 asteroid.data.kinect_wsj module

asteroid.data.kinect_wsj module

 asteroid.data.librimix_dataset module

asteroid.data.librimix_dataset module

 asteroid.data.musdb18_dataset module

asteroid.data.musdb18_dataset module

 asteroid.data.sms_wsj_dataset module

asteroid.data.sms_wsj_dataset module

 asteroid.data.utils module

asteroid.data.utils module

 asteroid.data.wham_dataset module

asteroid.data.wham_dataset module

 asteroid.data.whamr_dataset module

asteroid.data.whamr_dataset module

 asteroid.data.wsj0_mix module

asteroid.data.wsj0_mix module

 asteroid.data package

asteroid.data package

Submodules

	asteroid.data.avspeech_dataset module

	asteroid.data.dampvsep_dataset module

	asteroid.data.dns_dataset module

	asteroid.data.fuss_dataset module

	asteroid.data.kinect_wsj module

	asteroid.data.librimix_dataset module

	asteroid.data.musdb18_dataset module

	asteroid.data.sms_wsj_dataset module

	asteroid.data.utils module

	asteroid.data.wham_dataset module

	asteroid.data.whamr_dataset module

	asteroid.data.wsj0_mix module

 asteroid.dsp.consistency module

asteroid.dsp.consistency module

 asteroid.dsp.deltas module

asteroid.dsp.deltas module

 asteroid.dsp.overlap_add module

asteroid.dsp.overlap_add module

 asteroid.dsp.vad module

asteroid.dsp.vad module

 asteroid.dsp package

asteroid.dsp package

Submodules

	asteroid.dsp.consistency module

	asteroid.dsp.deltas module

	asteroid.dsp.overlap_add module

	asteroid.dsp.vad module

 asteroid.engine.optimizers module

asteroid.engine.optimizers module

 asteroid.engine.schedulers module

asteroid.engine.schedulers module

 asteroid.engine.system module

asteroid.engine.system module

 asteroid.engine package

asteroid.engine package

Submodules

	asteroid.engine.optimizers module

	asteroid.engine.schedulers module

	asteroid.engine.system module

 asteroid.filterbanks.analytic_free_fb module

asteroid.filterbanks.analytic_free_fb module

 asteroid.filterbanks.enc_dec module

asteroid.filterbanks.enc_dec module

 asteroid.filterbanks.free_fb module

asteroid.filterbanks.free_fb module

 asteroid.filterbanks.griffin_lim module

asteroid.filterbanks.griffin_lim module

 asteroid.filterbanks.melgram_fb module

asteroid.filterbanks.melgram_fb module

 asteroid.filterbanks.multiphase_gammatone_fb module

asteroid.filterbanks.multiphase_gammatone_fb module

 asteroid.filterbanks.param_sinc_fb module

asteroid.filterbanks.param_sinc_fb module

 asteroid.filterbanks.stft_fb module

asteroid.filterbanks.stft_fb module

 asteroid.filterbanks.transforms module

asteroid.filterbanks.transforms module

 asteroid.filterbanks package

asteroid.filterbanks package

Submodules

	asteroid.filterbanks.analytic_free_fb module

	asteroid.filterbanks.enc_dec module

	asteroid.filterbanks.free_fb module

	asteroid.filterbanks.griffin_lim module

	asteroid.filterbanks.melgram_fb module

	asteroid.filterbanks.multiphase_gammatone_fb module

	asteroid.filterbanks.param_sinc_fb module

	asteroid.filterbanks.stft_fb module

	asteroid.filterbanks.transforms module

 asteroid.losses.cluster module

asteroid.losses.cluster module

 asteroid.losses.mixit_wrapper module

asteroid.losses.mixit_wrapper module

 asteroid.losses.mse module

asteroid.losses.mse module

 asteroid.losses.multi_scale_spectral module

asteroid.losses.multi_scale_spectral module

 asteroid.losses.pit_wrapper module

asteroid.losses.pit_wrapper module

 asteroid.losses.pmsqe module

asteroid.losses.pmsqe module

 asteroid.losses.sdr module

asteroid.losses.sdr module

 asteroid.losses.sinkpit_wrapper module

asteroid.losses.sinkpit_wrapper module

 asteroid.losses.stoi module

asteroid.losses.stoi module

 asteroid.losses package

asteroid.losses package

Submodules

	asteroid.losses.cluster module

	asteroid.losses.mixit_wrapper module

	asteroid.losses.mse module

	asteroid.losses.multi_scale_spectral module

	asteroid.losses.pit_wrapper module

	asteroid.losses.pmsqe module

	asteroid.losses.sdr module

	asteroid.losses.sinkpit_wrapper module

	asteroid.losses.stoi module

 asteroid.masknn._dccrn_architectures module

asteroid.masknn._dccrn_architectures module

 asteroid.masknn._dcunet_architectures module

asteroid.masknn._dcunet_architectures module

 asteroid.masknn._local module

asteroid.masknn._local module

 asteroid.masknn.activations module

asteroid.masknn.activations module

 asteroid.masknn.attention module

asteroid.masknn.attention module

 asteroid.masknn.base module

asteroid.masknn.base module

 asteroid.masknn.convolutional module

asteroid.masknn.convolutional module

 asteroid.masknn.norms module

asteroid.masknn.norms module

 asteroid.masknn.recurrent module

asteroid.masknn.recurrent module

 asteroid.masknn package

asteroid.masknn package

Submodules

	asteroid.masknn._dccrn_architectures module

	asteroid.masknn._dcunet_architectures module

	asteroid.masknn._local module

	asteroid.masknn.activations module

	asteroid.masknn.attention module

	asteroid.masknn.base module

	asteroid.masknn.convolutional module

	asteroid.masknn.norms module

	asteroid.masknn.recurrent module

 asteroid.metrics module

asteroid.metrics module

 asteroid.models.base_models module

asteroid.models.base_models module

 asteroid.models.conv_tasnet module

asteroid.models.conv_tasnet module

 asteroid.models.dccrnet module

asteroid.models.dccrnet module

 asteroid.models.dcunet module

asteroid.models.dcunet module

 asteroid.models.demask module

asteroid.models.demask module

 asteroid.models.dprnn_tasnet module

asteroid.models.dprnn_tasnet module

 asteroid.models.dptnet module

asteroid.models.dptnet module

 asteroid.models.lstm_tasnet module

asteroid.models.lstm_tasnet module

 asteroid.models.publisher module

asteroid.models.publisher module

 asteroid.models.sudormrf module

asteroid.models.sudormrf module

 asteroid.models package

asteroid.models package

Submodules

	asteroid.models.base_models module

	asteroid.models.conv_tasnet module

	asteroid.models.dccrnet module

	asteroid.models.dcunet module

	asteroid.models.demask module

	asteroid.models.dprnn_tasnet module

	asteroid.models.dptnet module

	asteroid.models.lstm_tasnet module

	asteroid.models.publisher module

	asteroid.models.sudormrf module

	asteroid.models.zenodo module

 asteroid.models.zenodo module

asteroid.models.zenodo module

 asteroid.scripts.asteroid_cli module

asteroid.scripts.asteroid_cli module

 asteroid.scripts.asteroid_versions module

asteroid.scripts.asteroid_versions module

 asteroid.scripts package

asteroid.scripts package

Submodules

	asteroid.scripts.asteroid_cli module

	asteroid.scripts.asteroid_versions module

 asteroid.separate module

asteroid.separate module

 asteroid.utils.deprecation_utils module

asteroid.utils.deprecation_utils module

 asteroid.utils.generic_utils module

asteroid.utils.generic_utils module

 asteroid.utils.hub_utils module

asteroid.utils.hub_utils module

 asteroid.utils.parser_utils module

asteroid.utils.parser_utils module

 asteroid.utils.test_utils module

asteroid.utils.test_utils module

 asteroid.utils.torch_utils module

asteroid.utils.torch_utils module

 asteroid.utils package

asteroid.utils package

Submodules

	asteroid.utils.deprecation_utils module

	asteroid.utils.generic_utils module

	asteroid.utils.hub_utils module

	asteroid.utils.parser_utils module

	asteroid.utils.test_utils module

	asteroid.utils.torch_utils module

 asteroid package

asteroid package

Subpackages

	asteroid.data package
	Submodules
	asteroid.data.avspeech_dataset module

	asteroid.data.dampvsep_dataset module

	asteroid.data.dns_dataset module

	asteroid.data.fuss_dataset module

	asteroid.data.kinect_wsj module

	asteroid.data.librimix_dataset module

	asteroid.data.musdb18_dataset module

	asteroid.data.sms_wsj_dataset module

	asteroid.data.utils module

	asteroid.data.wham_dataset module

	asteroid.data.whamr_dataset module

	asteroid.data.wsj0_mix module

	asteroid.dsp package
	Submodules
	asteroid.dsp.consistency module

	asteroid.dsp.deltas module

	asteroid.dsp.overlap_add module

	asteroid.dsp.vad module

	asteroid.engine package
	Submodules
	asteroid.engine.optimizers module

	asteroid.engine.schedulers module

	asteroid.engine.system module

	asteroid.filterbanks package
	Submodules
	asteroid.filterbanks.analytic_free_fb module

	asteroid.filterbanks.enc_dec module

	asteroid.filterbanks.free_fb module

	asteroid.filterbanks.griffin_lim module

	asteroid.filterbanks.melgram_fb module

	asteroid.filterbanks.multiphase_gammatone_fb module

	asteroid.filterbanks.param_sinc_fb module

	asteroid.filterbanks.stft_fb module

	asteroid.filterbanks.transforms module

	asteroid.losses package
	Submodules
	asteroid.losses.cluster module

	asteroid.losses.mixit_wrapper module

	asteroid.losses.mse module

	asteroid.losses.multi_scale_spectral module

	asteroid.losses.pit_wrapper module

	asteroid.losses.pmsqe module

	asteroid.losses.sdr module

	asteroid.losses.sinkpit_wrapper module

	asteroid.losses.stoi module

	asteroid.masknn package
	Submodules
	asteroid.masknn._dccrn_architectures module

	asteroid.masknn._dcunet_architectures module

	asteroid.masknn._local module

	asteroid.masknn.activations module

	asteroid.masknn.attention module

	asteroid.masknn.base module

	asteroid.masknn.convolutional module

	asteroid.masknn.norms module

	asteroid.masknn.recurrent module

	asteroid.models package
	Submodules
	asteroid.models.base_models module

	asteroid.models.conv_tasnet module

	asteroid.models.dccrnet module

	asteroid.models.dcunet module

	asteroid.models.demask module

	asteroid.models.dprnn_tasnet module

	asteroid.models.dptnet module

	asteroid.models.lstm_tasnet module

	asteroid.models.publisher module

	asteroid.models.sudormrf module

	asteroid.models.zenodo module

	asteroid.scripts package
	Submodules
	asteroid.scripts.asteroid_cli module

	asteroid.scripts.asteroid_versions module

	asteroid.utils package
	Submodules
	asteroid.utils.deprecation_utils module

	asteroid.utils.generic_utils module

	asteroid.utils.hub_utils module

	asteroid.utils.parser_utils module

	asteroid.utils.test_utils module

	asteroid.utils.torch_utils module

Submodules

	asteroid.complex_nn module

	asteroid.metrics module

	asteroid.separate module

 asteroid

asteroid

	asteroid package
	Subpackages
	asteroid.data package
	Submodules

	asteroid.dsp package
	Submodules

	asteroid.engine package
	Submodules

	asteroid.filterbanks package
	Submodules

	asteroid.losses package
	Submodules

	asteroid.masknn package
	Submodules

	asteroid.models package
	Submodules

	asteroid.scripts package
	Submodules

	asteroid.utils package
	Submodules

	Submodules
	asteroid.complex_nn module

	asteroid.metrics module

	asteroid.separate module

 AVSpeech dataset

AVSpeech dataset

AVSpeech is an audio-visual speech separation dataset which was introduced by Google
in this article Looking to Listen at the Cocktail Party:
A Speaker-Independent Audio-Visual Model for Speech
Separation [https://arxiv.org/abs/1804.03619].

More info here [https://looking-to-listen.github.io/avspeech/download.html].

References

@article{Ephrat_2018,
 title={Looking to listen at the cocktail party},
 volume={37},
 url={http://dx.doi.org/10.1145/3197517.3201357},
 DOI={10.1145/3197517.3201357},
 journal={ACM Transactions on Graphics},
 publisher={Association for Computing Machinery (ACM)},
 author={Ephrat, Ariel and Mosseri, Inbar and Lang, Oran and Dekel, Tali and Wilson, Kevin and Hassidim, Avinatan and Freeman, William T. and Rubinstein, Michael},
 year={2018},
 pages={1–11}
}

 DAMP-VSEP dataset

DAMP-VSEP dataset

All the information regarding the dataset can be found in
zenodo [https://zenodo.org/record/3553059#.X5xKGnX7S-o].

References
If you use this dataset, please cite as follows :

@dataset{smule_inc_2019_3553059,
 author = {Smule, Inc},
 title = {{DAMP-VSEP: Smule Digital Archive of Mobile
 Performances - Vocal Separation}},
 month = oct,
 year = 2019,
 publisher = {Zenodo},
 version = {1.0.1},
 doi = {10.5281/zenodo.3553059},
 url = {https://doi.org/10.5281/zenodo.3553059}
}

 DNS Challenge’s dataset

DNS Challenge’s dataset

The Deep Noise Suppression (DNS) Challenge is a single-channel speech enhancement
challenge organized by Microsoft, with a focus on real-time applications.
More info can be found on the official page [https://dns-challenge.azurewebsites.net/].

References
The challenge paper, here [https://arxiv.org/abs/2001.08662].

@misc{DNSChallenge2020,
title={The INTERSPEECH 2020 Deep Noise Suppression Challenge: Datasets, Subjective Speech Quality and Testing Framework},
author={Chandan K. A. Reddy and Ebrahim Beyrami and Harishchandra Dubey and Vishak Gopal and Roger Cheng and Ross Cutler and Sergiy Matusevych and Robert Aichner and Ashkan Aazami and Sebastian Braun and Puneet Rana and Sriram Srinivasan and Johannes Gehrke}, year={2020},
eprint={2001.08662},
}

The baseline paper, here [https://arxiv.org/abs/2001.10601].

@misc{xia2020weighted,
title={Weighted Speech Distortion Losses for Neural-network-based Real-time Speech Enhancement},
author={Yangyang Xia and Sebastian Braun and Chandan K. A. Reddy and Harishchandra Dubey and Ross Cutler and Ivan Tashev},
year={2020},
eprint={2001.10601},
}

 FUSS dataset

FUSS dataset

The Free Universal Sound Separation (FUSS) dataset comprises audio mixtures of arbitrary sounds with source references for use in experiments on arbitrary sound separation.

All the information related to this dataset can be found in this repo [https://github.com/google-research/sound-separation/tree/master/datasets/fuss].

References
If you use this dataset, please cite the corresponding paper as follows:

@Article{Wisdom2020,
 author = {Scott Wisdom and Hakan Erdogan and Daniel P. W. Ellis and Romain Serizel and Nicolas Turpault and Eduardo Fonseca and Justin Salamon and Prem Seetharaman and John R. Hershey},
 title = {What's All the FUSS About Free Universal Sound Separation Data?},
 journal = {in preparation},
 year = {2020},
}

 Kinect-WSJ dataset

Kinect-WSJ dataset

Kinect-WSJ is a reverberated, noisy version of the WSJ0-2MIX dataset.
Microphones are placed on a linear array with spacing between the devices
resembling that of Microsoft Kinect ™, the device used to record the CHiME-5 dataset.
This was done so that we could use the real ambient noise captured as part of CHiME-5 dataset.
The room impulse responses (RIR) were simulated for a sampling rate of 16,000 Hz.

Requirements

	wsj_path : Path to precomputed wsj-2mix dataset. Should contain the folder 2speakers/wav16k/.
If you don’t have wsj_mix dataset, please create it using the scripts in egs/wsj0_mix

	chime_path : Path to chime-5 dataset. Should contain the folders train, dev and eval

	dihard_path : Path to dihard labels. Should contain *.lab files for the train and dev set

References

 LibriMix dataset

LibriMix dataset

The LibriMix dataset is an open source dataset
derived from LibriSpeech dataset. It’s meant as an alternative and complement
to WHAM.

More info here [https://github.com/JorisCos/LibriMix].

References

@misc{cosentino2020librimix,
 title={LibriMix: An Open-Source Dataset for Generalizable Speech Separation},
 author={Joris Cosentino and Manuel Pariente and Samuele Cornell and Antoine Deleforge and Emmanuel Vincent},
 year={2020},
 eprint={2005.11262},
 archivePrefix={arXiv},
 primaryClass={eess.AS}
}

 MUSDB18 Dataset

MUSDB18 Dataset

The musdb18 is a dataset of 150 full lengths music tracks (~10h duration) of different genres along with their isolated drums, bass, vocals and others stems.

More info here [https://sigsep.github.io/datasets/musdb.html].

 SMS_WSJ dataset

SMS_WSJ dataset

SMS_WSJ (stands for Spatialized Multi-Speaker Wall Street Journal)
is a multichannel source separation dataset, based on WSJ0 and WSJ1.

All the information regarding the dataset can be found in
this repo [https://github.com/fgnt/sms_wsj].

References
If you use this dataset, please cite the corresponding paper as follows :

@Article{SmsWsj19,
 author = {Drude, Lukas and Heitkaemper, Jens and Boeddeker, Christoph and Haeb-Umbach, Reinhold},
 title = {{SMS-WSJ}: Database, performance measures, and baseline recipe for multi-channel source separation and recognition},
 journal = {arXiv preprint arXiv:1910.13934},
 year = {2019},
}

 WHAM dataset

WHAM dataset

WHAM! is a noisy single-channel speech separation dataset based on WSJ0.
It is a noisy extension of wsj0-2mix.

More info here [http://wham.whisper.ai/].

References

@inproceedings{WHAMWichern2019,
 author={Gordon Wichern and Joe Antognini and Michael Flynn and Licheng Richard Zhu and Emmett McQuinn and Dwight Crow and Ethan Manilow and Jonathan Le Roux},
 title={{WHAM!: extending speech separation to noisy environments}},
 year=2019,
 booktitle={Proc. Interspeech},
 pages={1368--1372},
 doi={10.21437/Interspeech.2019-2821},
 url={http://dx.doi.org/10.21437/Interspeech.2019-2821}
}

 WHAMR dataset

WHAMR dataset

WHAMR! is a noisy and reverberant single-channel speech separation dataset
based on WSJ0.
It is a reverberant extension of WHAM!.

Note that WHAMR! can synthesize binaural recordings, but we only consider
the single channel for now.

More info here [http://wham.whisper.ai/].
References

@misc{maciejewski2019whamr,
 title={WHAMR!: Noisy and Reverberant Single-Channel Speech Separation},
 author={Matthew Maciejewski and Gordon Wichern and Emmett McQuinn and Jonathan Le Roux},
 year={2019},
 eprint={1910.10279},
 archivePrefix={arXiv},
 primaryClass={cs.SD}
}

 wsj0-2mix dataset

wsj0-2mix dataset

wsj0-2mix is a single channel speech separation dataset base on WSJ0.
Three speaker extension (wsj0-3mix) is also considered here.

Reference

@article{Hershey_2016,
 title={Deep clustering: Discriminative embeddings for segmentation and separation},
 ISBN={9781479999880},
 url={http://dx.doi.org/10.1109/ICASSP.2016.7471631},
 DOI={10.1109/icassp.2016.7471631},
 journal={2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
 publisher={IEEE},
 author={Hershey, John R. and Chen, Zhuo and Le Roux, Jonathan and Watanabe, Shinji},
 year={2016},
}

_static/ajax-loader.gif

_images/asteroid_logo_dark.png
@ste roid

_images/train_val_loss.png
- SI-SDR (dB)

|
i
1S

|
i
Iy]

|
iy
IS

|
i
>

-18

Training and validation loss in function of epoch number.

—— train_loss
- val loss

0 25 50 75 100 125
Epoch nb.

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Asteroid: Audio source separation on Steroids

 		
 What is Asteroid?

 		
 Who is it for?

 		
 Want to know more?

 		
 Installation

 		
 CUDA and PyTorch

 		
 Pip

 		
 Development installation

 		
 What is a recipe?

 		
 How is it organized?

 		
 How does it work?

 		
 Datasets and tasks

 		
 Speech separation

 		
 wsj0-2mix dataset

 		
 WHAM dataset

 		
 WHAMR dataset

 		
 LibriMix dataset

 		
 Kinect-WSJ dataset

 		
 SMS_WSJ dataset

 		
 Speech enhancement

 		
 DNS Challenge’s dataset

 		
 Music source separation

 		
 MUSDB18 Dataset

 		
 DAMP-VSEP dataset

 		
 Environmental sound separation

 		
 FUSS dataset

 		
 Audio-visual source separation

 		
 AVSpeech dataset

 		
 Speaker extraction

 		
 Training and Evaluation

 		
 Training with PyTorchLightning

 		
 Evaluation

 		
 Pretrained models

 		
 Using them

 		
 Model caching

 		
 Share your models

 		
 Note about licenses

 		
 Command-line interface

 		
 Inference

 		
 asteroid-infer

 		
 Publishing models

 		
 asteroid-upload

 		
 asteroid-register-sr

 		
 FAQ

 		
 My results are worse than the ones reported in the README, why?

 		
 How long does it take to train a model?

 		
 Can I use the pretrained models for commercial purposes?

 		
 Separated audio is really bad, what is happening?

 		
 PyTorch Datasets

 		
 LibriMix

 		
 Wsj0mix

 		
 WHAM!

 		
 WHAMR!

 		
 SMS-WSJ

 		
 KinectWSJMix

 		
 DNSDataset

 		
 MUSDB18

 		
 DAMP-VSEP

 		
 FUSS

 		
 AVSpeech

 		
 Filterbank API

 		
 Filterbank, Encoder and Decoder

 		
 Learnable filterbanks

 		
 Free

 		
 Analytic Free

 		
 Parameterized Sinc

 		
 Fixed filterbanks

 		
 STFT

 		
 MelGram

 		
 MPGT

 		
 Transforms

 		
 Griffin-Lim and MISI

 		
 Complex transforms

 		
 DNN building blocks

 		
 Convolutional blocks

 		
 Recurrent blocks

 		
 Attention blocks

 		
 Norms

 		
 Complex number support

 		
 Models

 		
 Base classes

 		
 Ready-to-use models

 		
 Publishing models

 		
 Losses & Metrics

 		
 Permutation invariant training (PIT) made easy

 		
 PIT

 		
 MixIT

 		
 SinkPIT

 		
 Available loss functions

 		
 MSE

 		
 SDR

 		
 PMSQE

 		
 STOI

 		
 MultiScale Spectral Loss

 		
 Deep clustering (Affinity) loss

 		
 Computing metrics

 		
 Lightning Wrapper

 		
 Optimizers & Schedulers

 		
 Optimizers

 		
 Schedulers

 		
 DSP Modules

 		
 LambdaOverlapAdd

 		
 DualPath Processing

 		
 Mixture Consistency

 		
 VAD

 		
 Delta Features

 		
 Utils

 		
 Parser utils

 		
 Torch utils

 		
 Hub utils

 		
 Generic utils

 		
 Asteroid High-Level Contribution Guide

 		
 The Asteroid Contribution Process

 		
 Getting Started

 		
 Proposing new features

 		
 Reporting Issues

 		
 Implementing Features or Fixing Bugs

 		
 Adding Tutorials

 		
 Improving Documentation & Tutorials

 		
 Participating in online discussions

 		
 Submitting pull requests to fix open issues

 		
 Reviewing open pull requests

 		
 Improving code readability

 		
 Adding test cases to make the codebase more robust

 		
 Promoting Asteroid

 		
 Triaging issues

 		
 About open source development

 		
 Common Mistakes To Avoid

 		
 Frequently asked questions

 		
 Attribution

 		
 How to contribute

 		
 Source code contributions

 		
 Writing new recipes.

 		
 Improving the docs.

 		
 Coding style

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/images/code_example_croped.png
